La CJO des Comptes Nationaux Trimestriels

Antonin Aviat

Division des Comptes Nationaux Trimestriels

le 28 octobre 2008

• Comptes trimestriels :

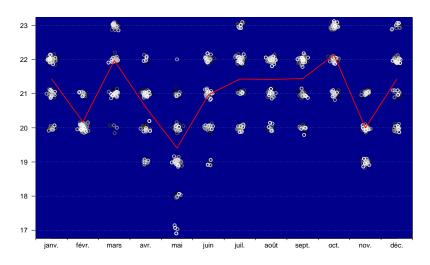
- ▶ de nombreux produits (hôtellerie, pétrole, alimentaire, textile, ...) / opérations (consommation / production / investissement, ...) sont traités ;
- une procédure unique pour assurer une cohérence méthodologique de la correction.
- Deux étapes distinctes à séparer :
 - ▶ l'estimation des effets de calendrier : l'idée est de régresser la série étudiée sur des variables de calendrier;
 - la correction des séries : on retire (une partie de) l'effet du calendrier estimé.

Notations

Soient:

- X la série à corriger, de fréquence S;
- x = F(X) sa transformée selon que le modèle retenu est multiplicatif $(F = \log)$ ou additif $(F = \operatorname{Id})$;
- $d_{a,m} = (d_{a,m}^{-1}, d_{a,m}^{-2}, \dots, d_{a,m}^{-7})$, où $d_{a,m}^{-1..6}$ est le nombre de lundis, mardis, ... samedis non-fériés dans le mois m de l'année a, et $d_{a,m}^{-7}$ le nombre de dimanches et jours fériés du mois.

La série des JO est saisonnière



La série des JO est saisonnière

quelles conséquences ? •

- quel devrait être le "poids" des jours ouvrables dans une série égale au nombre de jo (à une composante saisonnière déterministe prêt) ?
 - ightharpoonup si l'on construit une série avec un profil saisonnier déterministe stable $S_{a,m}$:

$$y_{a,m} = \sum_{i=1}^{5} d_{a,m}{}^{i} - S_{a,m}$$

où
$$S_{a,m} = 6\mathbb{I}_{m=1} + 6\mathbb{I}_{m=3} - 9\mathbb{I}_{m=5} - 6\mathbb{I}_{m=11}$$

- ightharpoonup et si nous effectuons la regression de y sur d
- nous obtenons des poids des jours ouvrables négatifs!

La série des JO est saisonnière

quelles conséquences ? ••

ullet si nous effectuons la regression de y sur d

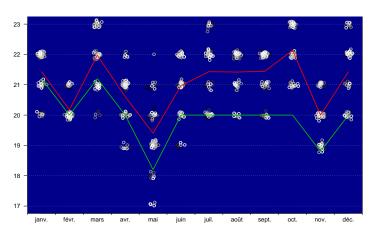
	Estimate	Std. Error	t value	$\Pr(> t)$	
Cons	35.7087	2.0244	17.639	< 2e - 16	***
d^1	-1.0453	0.1819	-5.746	1.21e - 08	***
d^2	-0.3916	0.2184	-1.793	0.0733	
d^3	0.2605	0.2264	1.151	0.2502	
d^4	-1.7271	0.1917	-9.009	< 2e - 16	***
d^5	-0.5587	0.2260	-2.471	0.0136	*

Residual standard error: 3.299 on 1002 degrees of freedom Multiple R-squared: 0.1153, Adjusted R-squared: 0.1109 F-statistic: 26.12 on 5 and 1002 DF, p-value: < 2.2e-16

• nous obtenons des poids des jours ouvrables négatifs !

La série des JO est saisonnière

Que se passe-t-il?



• nous capturons la corrélation entre les profils saisonniers de la série étudiée et les séries de Jo!

Pour s'abstraire de la saisonnalité, on effectue des différences saisonnières, et en notant :

 \bullet Δ l'opérateur de différenciation :

$$\Delta = 1 - L$$

 \bullet Δ_S l'opérateur de différenciation saisonnière :

$$\Delta_S = 1 - L^S$$

- D l'ordre d'intégration de $\Delta_S x$, et A = (D > 0);
- enfin, $\tilde{\Delta} = \Delta^A \Delta_S$.

• le modèle suivant est estimé :

$$\tilde{\Delta}x_t = \beta \tilde{\Delta}d_t + u_t \qquad u \sim AR(1)$$

Parcimonie •

Tests pour contraindre le modèle (critère de parcimonie) :

• y a-t-il un effet JO?

$$\beta = 0 \qquad \tilde{\Delta}x_t = \beta \tilde{\Delta}d_t + u_t$$

• y a-t-il un effet JO l'été ?

$$\beta_{ete} = 0$$
 $\tilde{\Delta}x_t = \beta_a \tilde{\Delta}d_t \mathbb{I}_{t \notin \{ete\}} + \beta_{ete} \tilde{\Delta}d_t \mathbb{I}_{t \in \{ete\}} + u_t$

Parcimonie ••

Tests pour contraindre le modèle (critère de parcimonie) :

• Regroupements caractéristiques :

Regroupements	Tests / Paramètres contraints β_c				
Prodc	$\beta_1 = \ldots = \beta_5$	$\beta_6 = \beta_7 = 0$	β_{sem}		
Consc	$\beta_1 = \ldots = \beta_5$	$\beta_7 = 0$	β_{sem}, β_6		
Semsd	$\beta_1 = \ldots = \beta_5$		$\beta_{sem}, \beta_6, \beta_7$		
Prodnc	$\beta_6 = \beta_7 = 0$		β_1,\ldots,β_5		
Consnc	$\beta_7 = 0$		β_1,\ldots,β_6		
(rien)			eta_1,\ldots,eta_7		

Extensions •

Un modèle "contraint" est sélectionné :

$$\tilde{\Delta}x_t = \beta_c \tilde{\Delta}d_t + u_t$$

• effets d'anticipation et/ou de rattrapage

$$\tilde{\Delta}x_t = \beta_c \tilde{\Delta}d_t + \beta_c^F F \tilde{\Delta}d_t + \beta_c^B B \tilde{\Delta}d_t + u_t$$

• anticipation : $\beta_c^F \neq 0$

▶ rattrapage : $\beta_c^B \neq 0$

Extensions ••

- des tests de stabilité sur la forme retenue in fine sont effectués
 - ▶ fenêtre temporelle de 5 à 8 ans selon la fréquence des ruptures dans l'estimation des effets JO

Correction de la série initiale

En notant:

• $\tilde{d}_{a,m}$ la série de jours ouvrables "CVS":

$$\tilde{d}_{a,m} = d_{a,m} - \overline{d}_{.,m}$$

οù

$$\overline{d}_{.,m} = \frac{1}{28 \ k} \sum_{a=a_0}^{a_0+28 \ k-1} d_{a,m}$$

• et

$$\hat{\mathbf{jo}}_t = \hat{\beta}_c \tilde{d}_t + \hat{\beta}_c^F F \tilde{d}_t + \hat{\beta}_c^B B \tilde{d}_t$$

la série CJO (i.e. sur laquelle est effectuée la Cvs) est :

$$x_t - \hat{\mathrm{JO}}_t$$

Résultat

Les effets jo du Pib

