La mobilité des niveaux de vie

Séminaire Inégalités DRCVM

J. Accardo DRCVM

Le thème

Niveau de vie : on mesure une situation annuelle

Chaque année n+2, rev. disp. année n / UC (au T4 de n) ERFS \rightarrow Insee – Première, Insee-Résultats, FPR, ... Mesure de l'inégalité des niveaux de vie annuels

Et les trajectoires individuelles ?

Cnis: programme moyen-terme 2014-2018 (trajectoires, parcours de niveaux de vie: avis n°7, n°10)

→ Quel effet de la « mobilité » sur l'inégalité ?

Le plan

1ère partie : Mobilité = ?

Définition ? Mesure ? Sources disponibles ? Résultats ?

2ème partie : Lien avec ce qu'on diffuse habituellement

Quel rapport entre l'évolution de la distribution des niveaux de vie et la distribution des évolutions ?

3ème partie : Mobilité et revenu permanent

Quels sont les effets de long terme (10 ans, 20 ans,...) de la mobilité sur les inégalités des niveaux de vie ?

I.1 - Fluctuations, mobilité

Niveaux de vie en t = 0,1: $Y_t = (Y_{it})$, i = 1,..., N

« Fluctuations » :
$$Y_{i1}/Y_{i0} \neq \text{Mobilit\'e} : Y_{i1}/Y_{i0} \leftarrow \rightarrow Y_{i0}$$

Indice de mobilité :
$$S_{shorrocks}(Y_0,Y_1) = 1 - \frac{I\left\{\frac{Y_0 + Y_1}{2}\right\}}{w_0 I(Y_0) + w_1 I(Y_1)}$$

Conséquences:

- Observer la mobilité → besoin de panels
- Mobilité dépend de l'horizon considéré
 - Mobilité annuelle
 - Mobilité sur plusieurs années (moyen-terme, long-terme)

I.2 – Quelles sources?

ERFS:

De 1995 à 2001 : 70 000 ménages, 170 000 individus renouvellement par tiers → panel sur 3 ans

De 2003 à aujourd'hui : 60 000 ménages, 130 000 individus Un tiers est commun à deux années consécutives

SRCV:

- actuellement 27 000 individus
- suivis 9 ans maximum
- de 2004 à 2013 (années de revenu : 2003 à 2012)

Limites:

- ERFS : panel de <u>logements</u>
- SRCV : rupture de série en 2007 (SRCV 2008)
- SRCV + ERFS : imputations de revenus exonérés

Annexe: effet des imputations (rev. patrimoine)

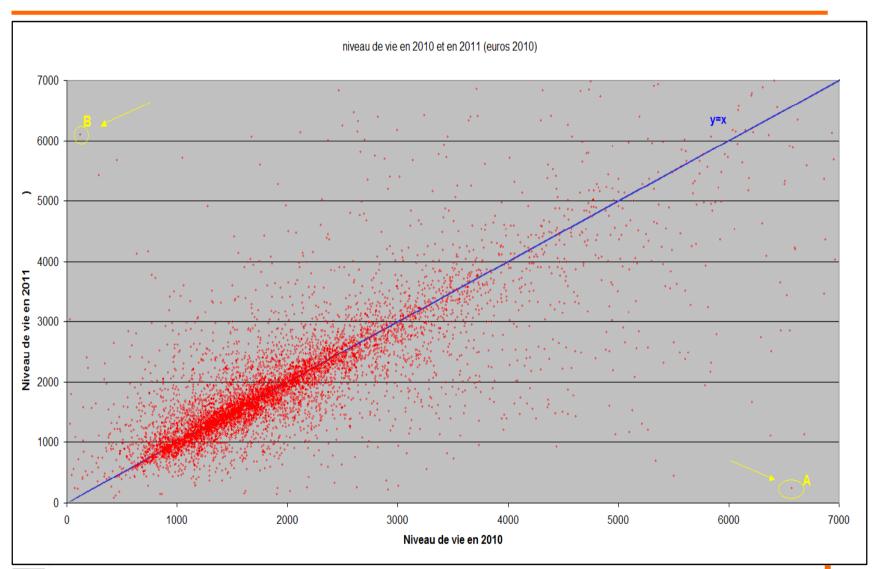
	Rev pat	annuel	Rev pat	moyens	
Quantile	ile β Ec. type		β	Ec. type	
0,025	0,613	0,03	0,602	0,03	
0,05	0,671	0,01	0,707	0,01	
0,1	0,776	0,01	0,808	0,01	
0,2	0,865	0,01	0,885	0,01	
0,3	0,901	0,00	0,922	0,00	
0,4	0,919	0,00	0,940	0,00	
0,5	0,920	0,00	0,944	0,00	
0,6	0,910	0,00	0,932	0,00	
0,7	0,885	0,00	0,904	0,00	
0,8	0,844	0,01	0,866	0,01	
0,9	0,765	0,01	0,789	0,01	
0,95	0,702	0,01	0,707	0,01	
0,975	0,652	0,01	0,650	0,01	

I.3 – Fluctuations annuelles

Taux d'évolution 2010/2011	
(euros constants)	Part de la population (%)
Moins de 50%	3
De 50 à 75%	7,8
de 75 à 90%	13,8
de 90 à 95%	9,3
de 95 à 100%	15,3
de 100 à 105%	15,9
de 105 à 110%	9,5
de 110 à 125%	12,5
de 12 à 150%	6,8
de 150 à 200%	3,5
de 200 à 300%	1,8
plus de 300%	0,5
Moyenne des taux d'évolution (y ₁ /y ₀)	10,3%
Moyenne des taux val.abs (y ₁ -y ₀)/y ₀	20,1%
Taux moyen : $E(y_1)/E(y_0)$	1,0%

I.3 – Composantes des fluctuations annuelles Formule

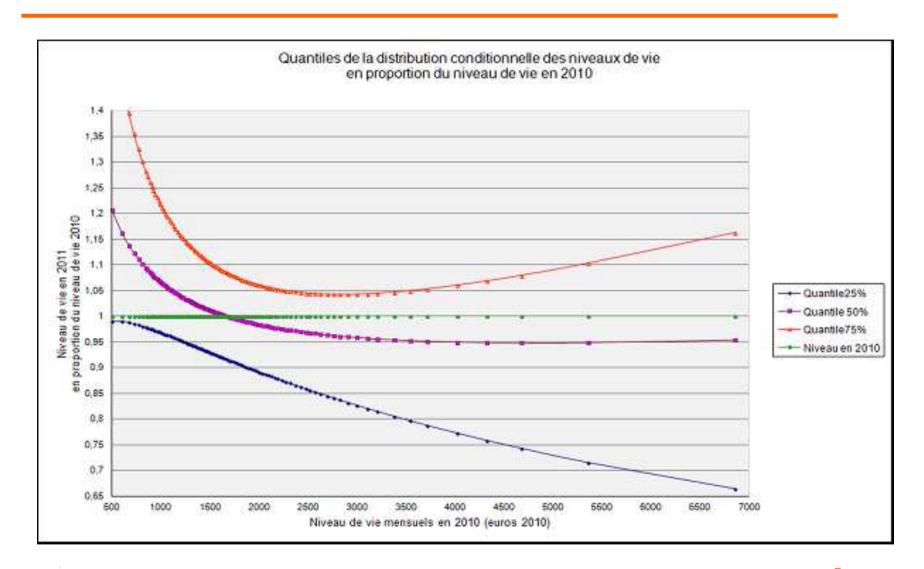
$$Y_t = R_t/UC_t$$

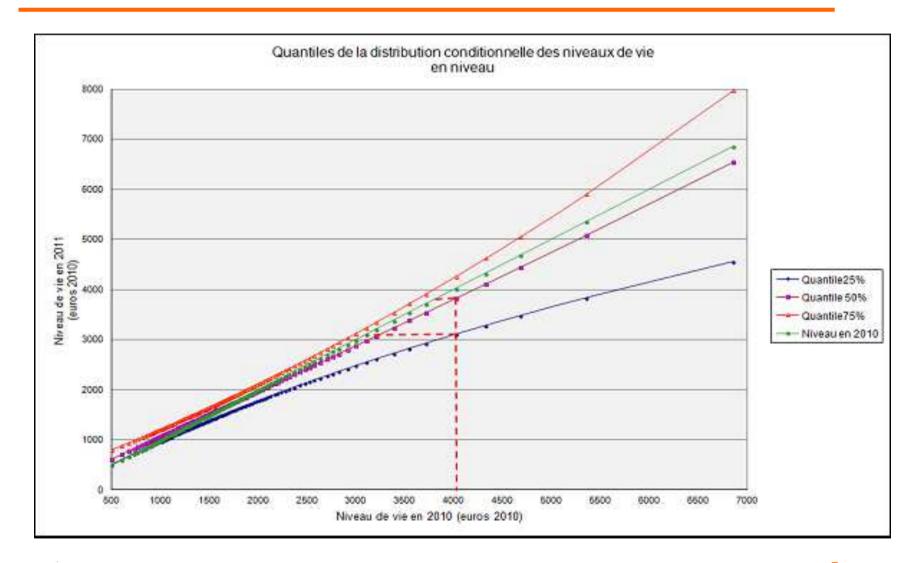

$$\Delta Y_t / Y_t =$$

- + $\triangle ACT_t/R_t$
- + $\Delta CHOM_t/R_t$
- + $\Delta RET_t/R_t$
- + \(\Delta PREST_t / R_t \)
- + $\Delta PAT_t/R_t$
- $\Delta IR_t/R_t$
- $\Delta UC_t / UC_t$

I.3 – Composantes des fluctuations annuelles

	Taux évol.	Rev. act.	chômage	Retraites	Prest. Soc.	Rev. pat	Impôts	U.C.
Ensemble	23,0	14,8	0,8	2,5	2,1	3,6	0,1	-0,9
1	48,6	34,9	3,2	6,0	5,4	2,6	-1,3	-2,2
2	29,5	18,7	1,6	3,1	3,0	3,6	0,2	-0,7
3	23,9	18,0	1,7	2,1	1,9	1,4	0,8	-2,0
8	14,1	7,7	0,1	2,4	1,3	2,9	0,0	-0,3
9	18,5	9,0	0,0	2,0	1,0	6,3	0,2	0,0
10	21,1	8,7	0,1	1,9	0,6	10,2	0,0	-0,4


I.4 – <u>Mobilité</u> annuelle (i)


I.4 – Mobilité annuelle (ii)

	Classement en t=1										
		1	2	3	4	5	6	7	8	9	10
	1	57	23	8	2	3	2	1	1	1	1
	2	22	42	15	8	5	2	2	2	1	1
Ē.	3	7	20	38	16	7	6	2	1	2	1
en t	4	5	7	21	35	15	7	4	3	1	0
E	5	3	3	9	21	35	16	7	3	2	1
Ē	6	2	2	4	8	17	40	16	7	3	1
988	7	1	1	2	4	10	17	40	17	7	3
0	8	1	1	1	3	4	6	20	43	18	3
	9	1	0	1	1	2	2	6	19	52	16
	10	1	1	1	1	1	2	2	4	13	73

I.4 – Mobilité annuelle (iii)

I.4 – Mobilité annuelle (iv)

1.5 – Indicateurs de mobilité annuelle

1 - Indice de Shorrocks 2010 - 2011 = 3,7%.

→ lisser sur 2 ans réduit le Gini de 3,7%

2 - Le coefficient
$$\beta$$
: $y_t = \alpha + \beta y_{t-1} + \varepsilon_t$ $(y = \ln(Y))$

		Ecart à la moyenne en t									
		+50%	+50% +25% +10% -10% -25% -50%								
	$\beta = 0.25$	13%	8%	5%	0%	-4%	-12%				
Ecart à la moyenne	$\beta = 0.50$	27%	16%	9%	-1%	-10%	-28%				
En t+1	$\beta = 0.75$	40%	22%	10%	-5%	-16%	-38%				
	$\beta = 0.90$	46%	24%	10%	-8%	-21%	-45%				

β en 2010-2011 : 0,76

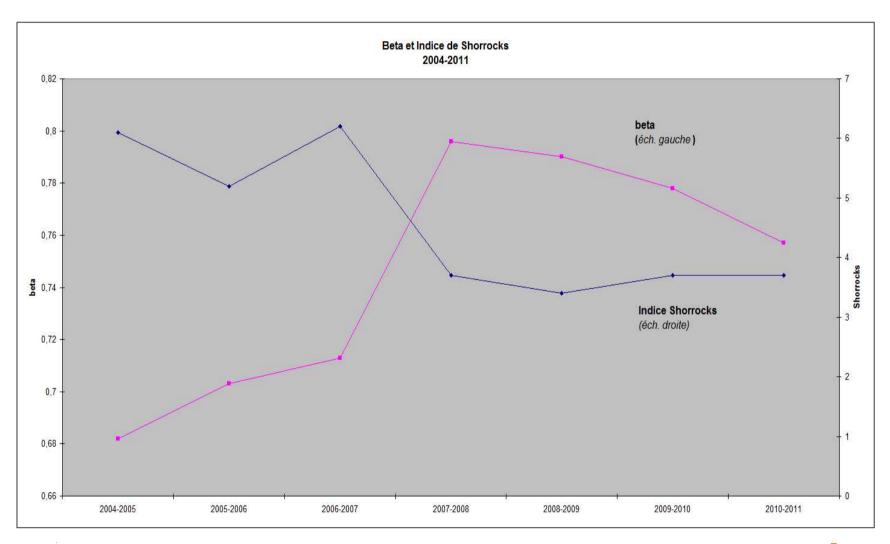
1.5 – Indicateurs de mobilité annuelle

S et β sont liés :

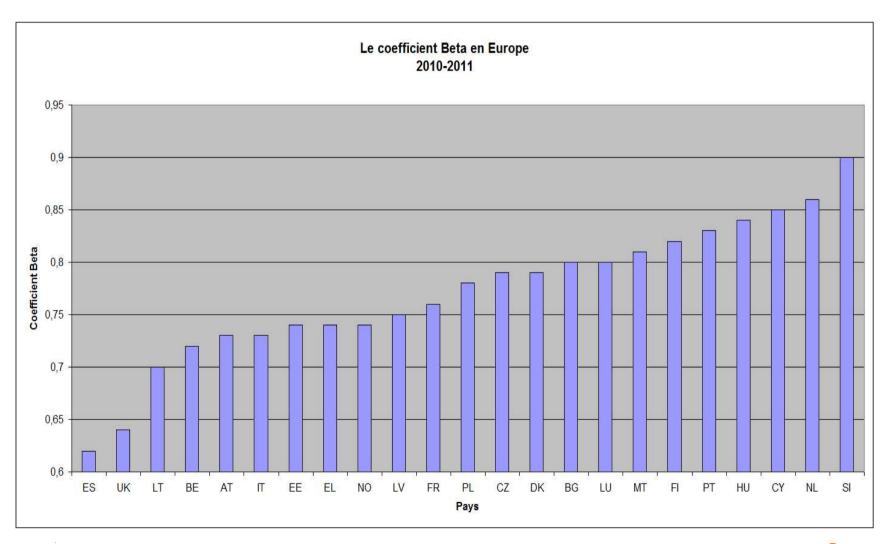
Si (Y_t) ~ lois log-normales LN(μ , σ), stationnaire et σ assez petit :

$$S_{\text{Shorrocks}}(Y_0, Y_1) \approx 1 - \frac{2\Phi(\omega\sigma/\sqrt{2}) - 1}{2\Phi(\sigma/\sqrt{2}) - 1}$$

avec
$$\omega = \sqrt{\frac{1+\beta}{2}}$$
 $S \approx 1-\omega$


(approximation de Fenton-Wilkinson)

I.5 – Qui est mobile (annuellement)?


$$y_t = Cte + X\beta y_{t-1} + \sigma \varepsilon_t$$

		Estimation	Student
	Niveau de vie 2010 (log)	0,843	8,734
Niv. Vie. 2010	1er quintile	-0,296	-2,629
NIV. VIE. 2010	3ème quintile	référence	
Sexe	homme	référence	
A ===	25 - 34 ans	-0,068	-1,93
Age	35 - 44 ans	Référence	
Type	Couple avec enfant	référence	
ménage	Autre ménage	-0,194	-2,641
Diplôme	Bac, Bac pro, brevet tech.	référence	
	professions libérales	-0,249	-2,473
CS	professions interm	-0,083	-2,161
LS	ouvriers	référence	
	Toujours inactifs	0,091	2,226
	R ²	0,69	
	S	0,28	

I.6 – La mobilité annuelle varie-t-elle ?

I.7 – Les comparaisons internationales sontelles possibles ?

II.1 – L'évolution des quantiles

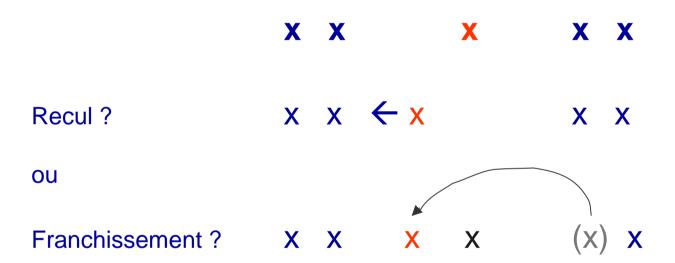
Chaque année *n*+2, d'après ERFS :

- distribution des niveaux de vie de l'année n.
- évolution par rapport à n-1

Evolution 2011-2012 de la distribution des niveaux de vie (ERFS)

Décile	1	2	3	4	5	6	7	8	9
Evol (%)	- 1,2	- 0,6	- 0,6	- 0,5	- 1,0	- 0,9	- 1,0	- 1,0	- 2,0

Analyse des évolutions : Δ quantiles. $\rightarrow \Delta$ individus ?


Ex (IP n° 1513): « En 2012, la situation se détériore pour tous les <u>échelons</u> de la distribution (...) la baisse des niveaux de vie est à la fois plus prononcée dans le haut et dans le bas de la distribution (...) Le recul [des revenus du patrimoine] en 2012 contribue fortement à la baisse du niveau de vie <u>de ces personnes.</u>»

II.1 – L'évolution des quantiles

- → Deux questions :
- Pourquoi l'ordre de grandeur de la variation annuelle des quantiles est si faible par rapport à celui des fluctuations individuelles ?
- la variation de *t* en *t*+1 d'un quantile nous dit-elle quelque chose sur la trajectoire des personnes à ce quantile en t?

II.2 – L'évolution des quantiles

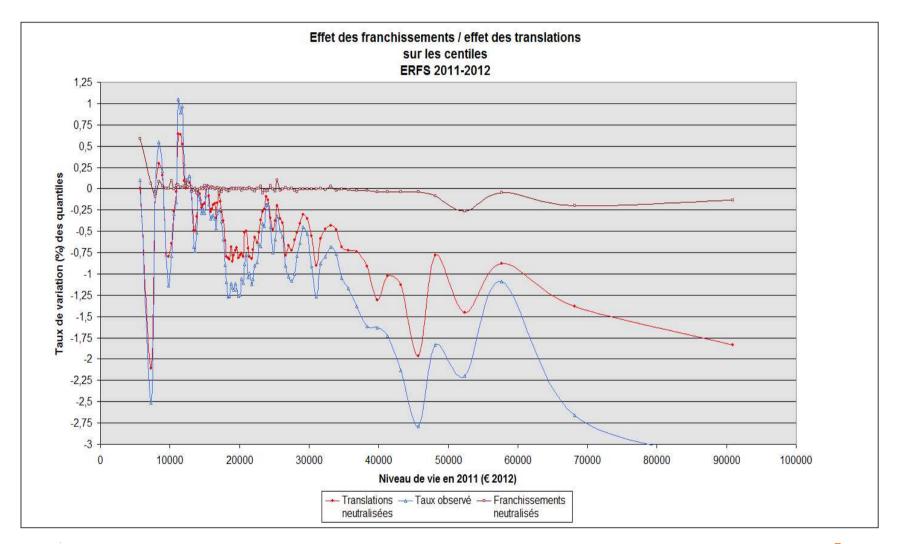
Pourquoi un quantile varie-t-il?

Empiriquement : l'effet des reculs est négligeable

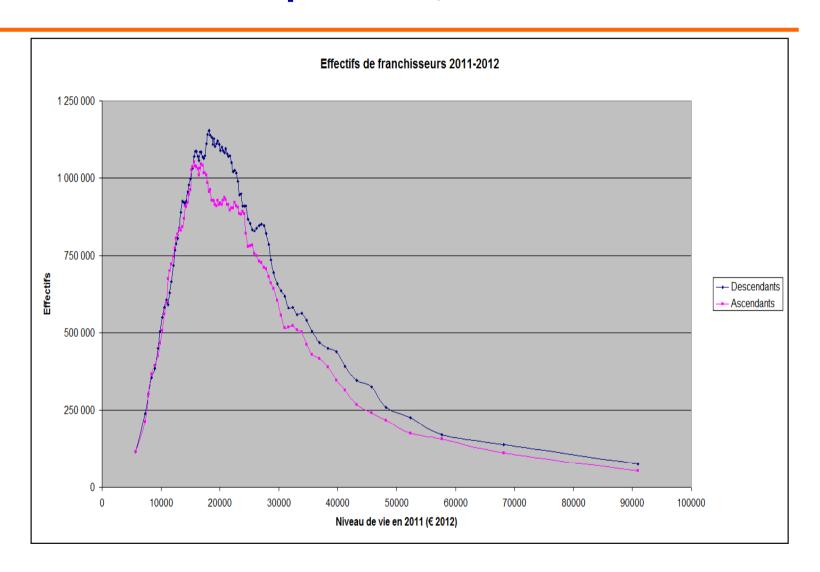
II.3 – L'évolution des quantiles

De 2011 à 2012 : médiane $m_{2011} = 19940$ à \rightarrow médiane $m_{2012} = 19740$

Deux mécanismes possibles :


I: les indiv dans $[m_{2012}, m_{2011}]$ en 2011 passent en 2012 sous m_{2012}

II: N_a indiv en-dessous de m_{2011} en 2011 passent au-dessus en 2012 N_d indiv au-dessus de m_{2011} en 2011 passent en dessous en 2012 $Avec\ N_d > N_a$


Expérience :

- remarque : 10 fois plus d'individus de type II que de type I.
- on neutralise $(y_{2012} = y_{2011})$ les indiv de type I (translations)
- on neutralise $(y_{2012} = y_{2011})$ les indiv de type II (franchissements)

II.4 – Seuls les franchissements importent

II.5 – Des flux importants, un solde faible

II.6 - Bilan : que peut-on dire ?

- → une hausse/baisse d'un quantile ne peut pas être interprétée comme reflétant la trajectoire annuelle des personnes autour de ce quantile.
- → elle est la résultante de mouvements nombreux et opposés.
- → pas de lien entre l'ampleur du mouvement d'un quantile et l'ampleur des trajectoires individuelles.

$$\Delta q \approx \frac{\# \operatorname{Asc}(q) - \# \operatorname{Desc}(q)}{\operatorname{f}(q)}$$

→ l'évolution de la distribution = comparaison de deux états collectifs qu'il vaut mieux voir comme « indépendants ».

III.1 – La mobilité à long terme :

- Intuition : l'inégalité du niveau de vie lissé sur T années décroît avec T

$$I(\frac{Y_1 + ... + Y_T}{T}) \ll \text{moyenne des } I(Y_s)$$

- On le vérifie pour T<=5 ; mais au-delà ?
- Or une position normative possible est : T doit être grand A la limite, tout le cycle de vie (Crésus, Solon, 550 BC).

Que peut-on inférer sur un horizon de 10 ans ? De 20 ans ?

III.2 – La mobilité observée

Horizon actuellement accessible : 5 ans (2007 – 2011)

1 - Une mobilité de « moyen terme » limitée

Année t	Niveau de vie courant Y _t	Coeff. Gini de Z _t	Shorrock S(Y ₂₀₀₇ ,,Y _t)	β(y _t , y ₂₀₀₇) observé	Processus markovien
2007	0,291	0,291	0%		
2008	0,294	0,283	3,20%	0,79	0,79
2009	0,291	0,278	4,80%	0,75	0,62
2010	0,296	0,275	6,10%	0,71	0,49
2011	0,294	0,273	6,90%	0,68	0,39

 $(Z_t = moyenne des niveaux de vie de 2007 à t)$

 \rightarrow mob. moyen terme (= $\beta_{t,t+h}$) \neq mob. annuelle itérée (= $\beta_{t,t+1}$ h)

le processus de niveau de vie n'est pas markovien (mémoire longue)

III.3 – La mobilité de long-terme : quels modèles dynamiques ?

Deux types de modèles dynamiques

I. Mémoire finie AR(p) :
$$y_t = \alpha_{0,t} + \alpha_{1,t} y_{t-1} + ... + \alpha_{p,t} y_{t-p} + \varepsilon_t$$

II. Mémoire infinie (effet « fixe »): $y_t = \eta + \alpha_{0,t} + \epsilon_t + \theta_t \epsilon_{t-1}$

$$\eta \cong N(\mu, \sigma)$$
 et $\varepsilon_t \cong N(0, \tau_t)$

Utilisation en projection \rightarrow spécifier les sentiers α_{kt} , τ_t , θ_t (?)

empiriquement : $(y_{it}) \approx stationnaire$

→ on négligera la composante non stationnaire.

III.3 – La mobilité de long-terme : quels modèles dynamiques ?

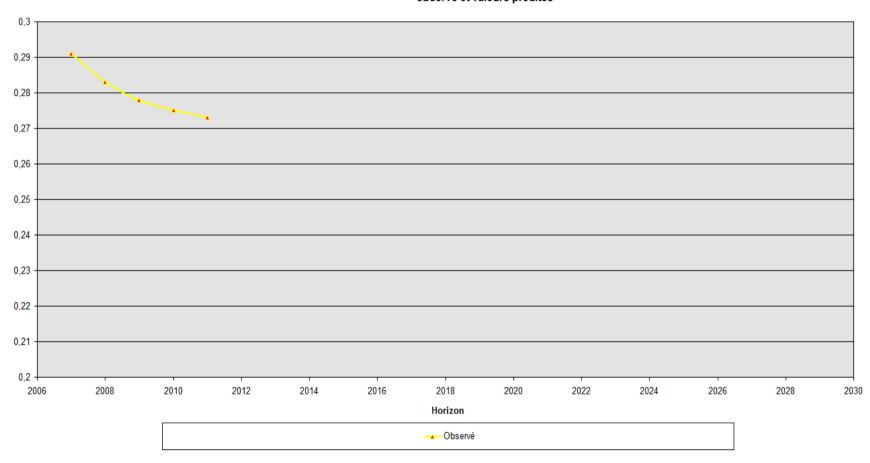
```
Modèle I y_t = \alpha_0 + \alpha_1 y_{t-1} + ... + \alpha_{p_t} y_{t-p} + \epsilon_t
Modèle II y_t = \eta + \epsilon_t + \theta \epsilon_{t-1}
```

Estimation : moments - Données : $y_{i,2007}$, $y_{i,2008}$,..., $y_{i,2011}$, i = 1,..., N

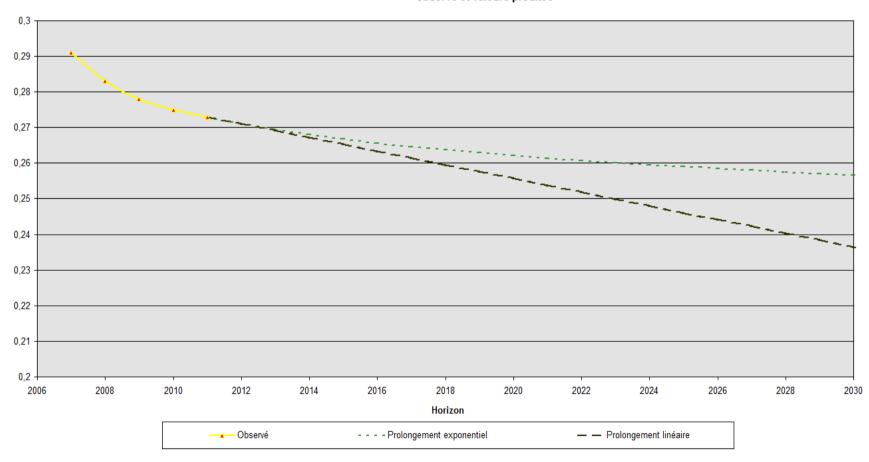
→ approcher la matrice de variance-covariance : approximation « parfaite » avec I pour p = 4 très bonne avec II (plus parcimonieux).

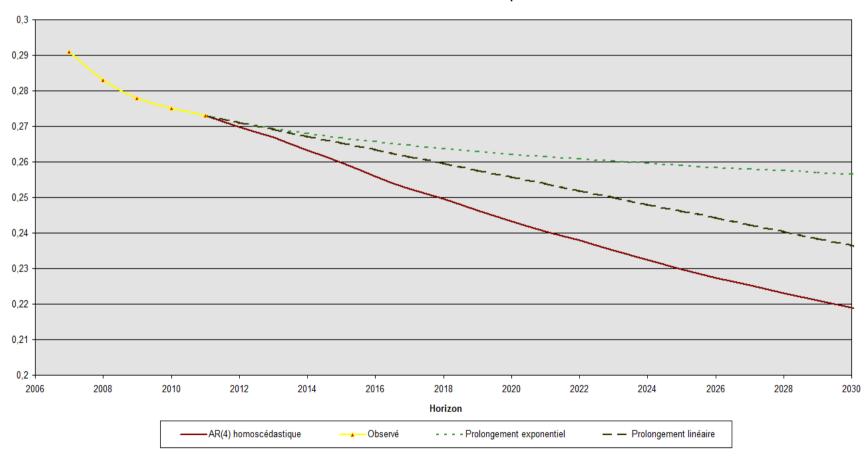
Remarque : simulation des trajectoires

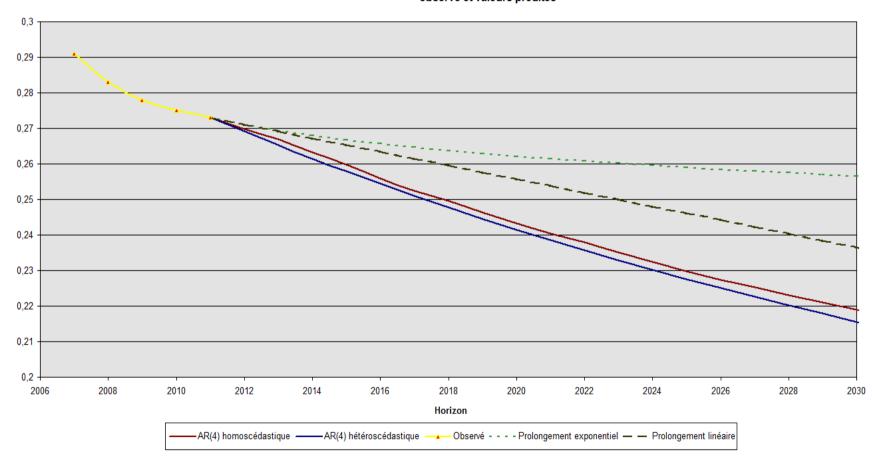
- avec modèle II : on doit supposer la log-normalité
- avec modèle I : on peut relâcher la log-normalité et même l'hypothèse d'homoscédasticité.

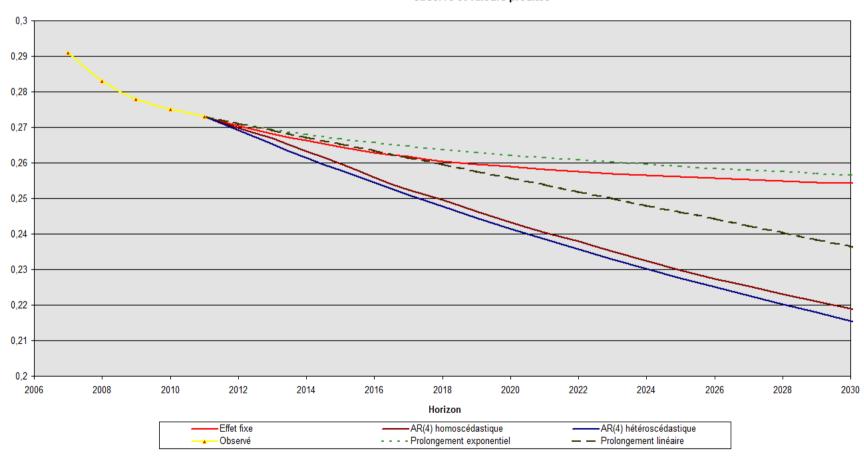

régression quantile pour modèle I :

$$Q_{\alpha}(y_{2011}/y_{2010},...,y_{2007}) = Constante(\alpha) + a_1(\alpha)y_{2010} + ... + a_4(\alpha)y_{2007}$$


 \rightarrow possible de simuler $\ell(Y_t/Y_{t-1}, ..., Y_{t-4})$ pour t = 2012, 2013,..., sans l'hypothèse d'homoscédasticité.


III.4 – Gini du niveau de vie permanent : observé


III.4 – Gini du niveau de vie permanent : prédictions « naïves »


III.4 – Gini du niveau de vie permanent : prédiction AR(4) homoscédastique

III.4 – Gini du niveau de vie permanent : prédiction par AR(4) hétéroscédastique

III.4 – Gini du niveau de vie permanent : prédiction par modèle effet fixe

