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Résumé — The aim of this methodological note is to describe
balanced sampling and when it is to be applied. The cube method
and its implementation are also discussed, and variance estimation
will also be briefly touched upon.

I. INTRODUCTION

When establishing a sample, the question of the sampling
plan and its effectiveness must be addressed. The aim is to
obtain a sample that best reflects the heterogeneity of the
population surveyed by reducing the variance of the estimators
and limiting costs. The classical sampling designs which aim
at reducing variance are stratified designs and sampling designs
with unequal probabilities of inclusion. Nevertheless, it is not
always desirable to perform stratification if n is low or if you
do not wish to compute allocations for rounding issues, for
example.

The idea of balanced sampling is based on using available
information correlated with the variable of interest when deve-
loping the plan. The precision of a sampling design is based on
balancing properties : the sample is selected so as to comply
with known information. For example :

I compliance with age-gender structure ;
I distribution according to number of employees.

Where a selected sample accurately reflects the information
available in accordance with what is actually found within
the population, it will reflect the information concerning the
variable of interest well thanks to the correlation between
the two types of information. This explains the ability of
the balanced sampling plan to improve the efficiency of the
estimators.

Despite the difficulty in applying a general method in an
algorithmic manner that complies with both the balancing
constraints and the random selection of the sample 1, we will
see that the CUBE method, developed by Deville and Tillé en
2004, makes it possible to draw samples that are approximately
balanced.

II. DEFINITION OF BALANCED SAMPLING

A sample is said to be balanced on one or more of the
variables available within the sampling frame when, for each
of them, the Horvitz-Thompson estimator of the total precisely
matches the actual total from the sampling frame.

1. The balancing may prove to be so constrained that it would lead to a
deterministic selection. However, the selection must remain random in order for
the statistical properties of sampling bias and variance to remain meaningful
and in order to comply with the inclusion probabilities.

By way of a reminder, the following shows the definition
of the unbiased Horvitz-Thompson estimator of the total for a
variable x written t̂xπ for a sample S :

t̂xπ = ∑
i∈S

xi

πi

where πi is the probability of the individual i being included
in the sample S.

A sample S from a population U balanced with the control
variable x therefore complies with the following constraint :

∑
i∈S

xi

πi
= ∑

i∈U
xi so t̂xπ = tx

This therefore acts as a form of calibration at the level of
the sampling plan for the auxiliary variables. By design, the
estimator of the total for x is unbiased and of zero variance.
Let us examine a working model of type :

yi = βxi + εi

which can be rewritten by dividing by πi then aggregating each
individual i in the form :

t̂yπ = β t̂xπ + t̂επ

Since the sampling plan is balanced using the variable x
correlated to y,its total is perfectly estimated 2, this therefore
gives :

t̂yπ = β tx + t̂επ

And we obtain the following 3 :

V (t̂yπ) =V (t̂επ)

It can therefore be seen that :
I Compliance with the probabilities of inclusion results in

an unbiased estimate → E( ˆtyπ)=ty ;
I Restricting the support from the sampling plan to balan-

ced samples allows the first term variability in x to be
cancelled out ;

I The variance is now only indicated by the residuals of
the model.

It is also possible to deduce certain properties :
Assuming that xi=πi, i.e. balancing takes place on the basis of
the probabilities of inclusion.
The balancing equation implies that

t̂xπ = ∑
i∈S

xi

πi
= ∑

i∈S

πi

πi
= n(s)

and tx = ∑
i∈U

πi = E(n(S))

2. The variance of t̂xπ is zero.
3. Where the expressionβ tx is constant.
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However t̂xπ =tx hence

n(s) = E(n(S))

The sampling design then implies a fixed size of the sample.

Assuming that xi=1, i.e. balancing takes place on the basis
of a constant variable of 1.
The balancing equation implies that

∑
i∈S

xi

πi
= ∑

i∈S

1
πi

= N̂π = ∑
i∈U

1 = N

The size of the population has therefore been perfectly
estimated.

There is also reason to believe, and it could be proven
that, for a stratified design with proportional allocation, the
size of the strata can be perfectly estimated using the binary
variables indicating strata affiliation as balancing variables.
Balanced sampling is therefore a random sampling method that
ensures that, in the end, once the sample has been drawn, the
proportions of individuals, in the population and in the sample
respectively, will be equal for each classes.

During the conduct of a survey, a non-response phenomenon
is generally observed within the sample, which upsets the
balance. Balanced sampling is therefore of particular interest
for a first degree of sampling or when a low non-response rate
is anticipated. On can mention, for example 4 :

I Drawing Primary Units from the Master Sample ;
I Drawing Census Rotation Groups.

III. THE CUBE METHOD

A. Principe

The algorithm proposed by Deville and Tillé (2004) [2] 5

has a general framework and enables balanced samples to be
selected from any number of variables, with a given set of
probabilities of inclusion πππ=(π1, ...,πN). A sample s is seen
as a vertex (s1, ...,sN) ∈ {0,1}N of the N-cube C=[0,1]N .The
algorithm consists of a random walk from the probabilities
of inclusion vector πππ to the selection indicator vector s I by
randomly rounding the πi to 0 or 1.
This gives :

t̂xπ = ∑
i∈U

xi

πi
Ii = tx = ∑

i∈U
xi = ∑

i∈U
xi

πi

πi

so ∑
i∈U

xi

πi
(Ii−πi) = 0 or A(I−πππ) = 0

where A = ( x1
π1
, ..., xN

πN
) ; I = (I1, ..., IN)

T is the selection
indicators vector and πππ = (π1, ...,πN)

T is the probabilities of
inclusion vector. It can therefore be seen that I must be within
the space of the constraints πππ +Ker(A) which represents the
subspace in which the balancing conditions are met.

4. See Part V. for examples of application.
5. The CUBE macro is available, together with its documentation, on the

INSEE website : https ://www.insee.fr/fr/information/2021904

t is therefore easy to represent this model in a three-
dimensional space for a population made up of three units :
i.e. a cube. Taking the example of a simple random survey
without replacement of size 2, and by assigning the same
probabilities of inclusion to each of the units (πi=2/3), it can be
seen that precise balancing is always achieved by balancing to
the constant variable equal to 1. It is therefore known that there
are 3 balanced samples composed of 2 distinct units : these are
the vertices (0,1,1) ; (1,1,0) and (1,0,1).

Fig. 1. Graphical representation for a population of 3 units for a simple random
survey without replacement, balanced with the variable “1”.

B. Details of the Algorithm

We will now provide details of the algorithm, which is
implemented in two phases : the flight phase and the landing
phase.

α . The flight phase

We start with πππ(0)=πππ . At stage t, we have πππ(t)=πππ(t−1)+δδδ
(t)

where

δδδ
(t) =

{
λ1(t)uuu(t) with proba λ2(t)/(λ1(t)+λ2(t))
−λ2(t)uuu(t) with proba λ1(t)/(λ1(t)+λ2(t))

I λ1(t),λ2(t)>0
→ ensures that at least one unit is selected or definitively
rejected ;

I uuu(t) ∈ Ker(A)
→ ensures that the balancing equations are complied with
precisely ;

I The random selection ensures that the probabilities of
inclusion are complied with precisely.

The flight phase operates in successive iterations where each
step decides the fate of at least one individual and also selects
a random direction within the constraints area. We will follow
this until it leads to one of the sides of the cube. The flight phase
allows decisions to be made for at least N− p individuals 6and
allows the balancing constraints and probabilities of inclusion
to be complied with.
If, at the end of this phase, we have arrived at one of the vertices
of the cube, this means that the sample is perfectly balanced ;
otherwise it is impossible to precisely comply with all of the
constraints and we will find ourselves “stuck” on one side of
the cube : the landing phase should therefore be initiated. This
will allow decisions to be made for the remaining individuals
while complying precisely with the probabilities of inclusion
and roughly complying with the balancing constraints.

β . The landing phase

There are three possibilities for this phase of the algorithm.
The first is to release the constraints one by one. We therefore
introduce a degree of freedom at each step, which allows us
to continue sampling. This is the most general option in the
sense that it allows us to work with any number of balancing
variables. However, the first variables released may be poorly

6. where p is the number of balancing constraints.
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balanced.

The second involves the definition of a sampling plan for the
remaining units :

I complying with the initial probabilities of inclusion ;
I minimising (on average) the deviation from the balance,

using a criterion of type :

min E||t̂xπ − tx||2

This option allows a good overall balance to be achieved ;
however, it is necessary to fully define a sampling plan for a
population of p individuals, which is not possible if p is large 7.

The third is identical to the second, but also complies with
the fixed size constraint. In order to do so, it is necessary to
achieve a balance with the possibility of inclusion.

γ . General example

Once again, we position ourselves within our cube, so within a
population of 3 units to which we assign the same probabilities
of inclusion (πi=2/3)by way of a more general example, this
would mean that the balance is sometimes exact 8. ere we
will examine the case of a random survey without replacement
balanced with the order number 9 of the individuals.

Fig. 2. Graphical representation for a population of 3 units for a random
survey without replacement, balanced with the order number of the units.

The balance is only precise at the vertex (1,0,1) that repre-
sents the only intersection of a vertex within the cube with the
constraints space.
At the end of the flight phase, the algorithm will have selected
this vertex 10 or will have led to one of the other three points
of intersection between the cube and the constraints space : the
landing phase will then need to be initiated. Depending on the
optimality criterion, this phase will lead to the selection of one
of the 5 samples (which are therefore approximately balanced)
positioned on the vertices of the edges corresponding to the
points of intersection 11.
The optimality criterion selected for the landing phase increases
the chances of retaining the samples that are “closest” to the
balance. Nevertheless, in order to preserve the random nature
of the sampling, the method cannot guarantee that a unique,
perfectly balanced sample will be obtained.

IV. VARIANCE ESTIMATION

Deville et Tillé (2005) proposed a class of variance estimators
under the following assumptions :

I the sampling plan is exactly balanced ;

7. if p= 19, for example, there are approximately 500,000 possible samples.
8. You will recall that, in the previous example, the balance was always

precise and the algorithm was able to end during the flight phase by establishing
a sample.

9. Variable corresponding to the value of the line on which the individual
is positioned within the file.

10. And in this case, it will end here, having precisely complied with all of
the balancing constraints.

11. This therefore relates to the following vertices : (0,1,0), (0,1,1), (0,0,1),
(1,1,0) and (1,1,1).

I the sampling design is at maximum entropy 12 among
designs balanced with the same variables xi and with the
same probabilities of inclusion πππ .

Therefore, under these two conditions, the balanced design can
be viewed as a Poisson sampling design conditional to t̂xπ =tx.
The resulting approximate variance is given by :

Vapp(t̂yπ) = ∑
i∈U

bi(
yi

πi
− xT

i
πi

B)2

where B is the regression coefficient vector 13 of yi
πi

for the
balancing variables xi

πi
and the bi’s are solutions from a

non-linear system, a first approximation of which is given in
the article by Deville and Tillé as bi=πi(1-πi).
Using the principle of expansion, we then obtain the Deville
and Tillé variance estimator.

However, the two conditions described above are generally
not verified, firstly due to the landing phase (but reasonable if
the number of balancing variables p is small with respect to N)
and secondly due to the difficulty of making a plan as random
as possible (for example if the file is sorted according to an
auxiliary variable, the result is a stratification effect that affects
the entropy).

V. APPLICATIONS

A. Balancing Within the Master Sample

The Master Sample (MS) is a sample of zones used as a
reserve of dwellings for household surveys. The 1999 Master
Sample (MS99) was used for the surveys conducted between
1999 and 2009. Each of these zones was entrusted to a
collector who was “stable over time and relatively nearby”.
These are referred to as Collector Action Zones (ZAE). The
switch to Census Surveys from 2004 onwards has resulted in
changes having to be made to the sampling system used for
the MS.

In each large municipality (more than 10,000 inhabitants),
stratification took place according to the address type, which
was divided into 5 rotation groups. In the case of small
municipalities, stratification took place based on the region
and the municipalities were divided into 5 rotation groups by
means of random sampling performed using the Cube method.

The new Octopusse Master Sample was presented as follows :
At the level of the large municipalities :
I 1 ZAE = 1 large municipality ;
I drawing a sample of large municipality ZAEs (Cube

method) ;

12. The entropy of a sampling design p is defined by the following :

L(p) =−∑
s∈U

p(s) ln(p(s))

This is a measure of disorder : the greater it is, the more the design allows
for the selection of a large number of samples (and therefore leaves plenty of
scope for randomness).

13. If we consider Ei=yi-xT
i B within the variance formula, it can therefore

be seen that Ei represents the regression residuals.

©Insee 3



I for a survey conducted during year t +1, drawing a sample
of dwellings from among those included in the Census
surevy in year t.

→ Two-degree sampling.

At the level of the small municipalities :
I 1 ZAE = group of small municipalities, containing at least

300 principal residences from each of the rotation groups ;

I drawing a sample of small municipality ZAEs (Cube
method) ;

I for a survey conducted during year t +1, drawing a sample
of dwellings from among those included in the Census
survey in year t.

→ Two-degree sampling.

The drawing of the ZAEs (in small municipalities or in large
municipalities) was balanced, using the CUBE method, with
the number of principal residences within the ZAE for each
rotation group, the disaggregated tax income for each rotation
group, the number of principal residences by space type in the
1999 Census survey 14.

B. Sampling for the CARE-I Survey

The Institution CARE survey conducted among elderly
people living in institutions by the Directorate for Research,
Studies, Assessment, and Statistics (DREES) is intended to
supplement the CARE (Capacities, Aids and REsources) survey
conducted among elderly people living in ordinary households,
which pursues the same objectives : monitoring changes in
dependency and measuring the involvement of family and
friends in caring for the elderly person. The sampling of the
institutions takes place in 2 phases. First, 30 departments are
drawn and then 1000 institutions are drawn from within those
departments. The departments are selected based on the number
of residents they have living in institutions for elderly people.
Indeed, the departments are not all equivalent to one another :
they all have more or fewer institutions and/or residents. In
order to take account of those differences, sampling takes place
with unequal probabilities. The departments were drawn from
within 3 groups of homogeneous departments, which were
classified following an HCA, which took account of the type of
institution and capacity bracket variables. These three groups
form the sampling strata.
During the second phase, the aim is to achieve a distribution of
senior citizens in the sample that is identical to the distribution
of all residents in institutions (in the field selected). Samples
are drawn from all of the departments previously selected. To
enable representative sampling of the institutions, balanced sam-
pling was performed using the SAS CUBE macro according to
the institution category and legal status variables, taking account
of the probability of the institution being included in the sample,
while also complying with the fixed size sampling constraint
(same number of establishments per department within the
sample).

14. In the Île-de-France region, this balance is supplemented by other
variables (concerning demographic structure and dwelling type in particular).
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