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Calibration Techniques

Olivier Sautory

Calibration techniques, as developed by Deville and Särndal [3] and [4], can be used to adjust a sample,  
through individual re-weighting using available auxiliary information for a certain number of variables,  
known as calibration variables. Such calibration weightings are used to calibrate the sample of known 
population totals of quantitative variables, and of known population distributions for levels of categorical 
variables. They also improve the accuracy of estimates of variables of interest that are highly correlated 
with calibration variables.

INSEE has applied these techniques since 1990 using the SAS Calmar macro1 (see Sautory [10]). Calmar 
is an abbreviation for Calibration on Margins: this refers to the technique used to adjust the margins (from 
sample estimates) of a contingency table, cross-tabulating two (or more) category variables, to the known 
population  margins.  However,  the  application  is  more  general  than  “calibration  on  margins”  strictly  
speaking, as it can be used to calibrate quantitative variable totals.

The R Icarus package,  developped by A. Rebecq [8],  can also be used to apply these methods. It  is 
available on CRAN.

1. Calibration: Theoretical Aspects

1.1 The Problem and the Solution

We consider  a  population  U  of  individuals,  from  which  probability  sample  s  is  selected.  For  each 
individual k in U, k denotes the probability of its inclusion in s. Y is a variable of interest for which we 

would like to estimate the total in population  Y=∑
k∈ U

yk. 

The estimator for Y using survey data takes the form Ŷ=∑
k∈ s
dk ykin almost all cases, where values for dk 

are estimation weights associated with sample observations. These weights are often “survey weights”,  
equal  to the inverse of the probabilities  of  inclusion  k:  from this,  we obtain the  Horvitz-Thompson 

estimator:  ŶHT=∑
k∈ s

1
πk
yk.

We assume that the totals in population J of auxiliary variables2 X1 … Xj … XJ, available for all survey 

observations, are known: X j=∑
k∈ U

x jk

We will try to obtain new weightings, “calibration weights” wk that are as close as possible, according to 
a “distance function” G, to the initial weightings dk, and which are used to calibrate the totals of variables 
X j, i.e. which verify the calibration equations:

∀ j=1⋯ J∑
k∈ s
wk x jk=X j   (1)

The distance function G, with argument r = wk / dk, used to measure the distances between values for wk 

and dk is  positive  and convex,  and verifies  G(1)  = 0.  The unknown weights  wk minimise the  value 
D=∑

k∈ s
dkG(w k /dk)under calibration constraints (1).

1 available to download from the INSEE website, www.insee.fr
2 These are quantitative or indicative variables associated with levels of categorical variables.
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The solution to this problem is given by  w k=dk F (xk
' λ),  where  ,   is a vector of J 

Lagrange multipliers linked to the constraints (1). F, known as the calibration function, is the inverse 
function of the derivative of function G. 

Vector  is obtained by solving the non-linear system of J equations with unknown values for J resulting 

from calibration equations: ∑
k∈ s
dkF (x ' k λ)xk=X where X is the vector of totals for Xj.

We can solve this system numerically using Newton’s iterative method; we calculate a series of vectors  
(i) defined  by  a  recurrence  relation,  initialising  the  algorithm  with  vector  (0)  =  0.  Convergence  is 

obtained where the ratio of weights  obtained in two successive iterations “almost stops moving”:
 3

When calibration weights wk have been calculated, the estimator of all variable of interest totals Y will be 

the “calibrated” estimator, in the form Ŷ w=∑
k∈ s
w k yk.

1.2 Calibration Functions

Four  calibration methods,  corresponding to four distance functions,  are  provided in the SAS Calmar  
macro and the R Icarus package. They are defined by the form of function F. Below we indicate for each 

method  the  function  G(r)  (where  denotes  the  “weight  ratio”),  and  function  F(u)  (where 

.

a) ”Linear” Method

D is therefore a chi-squared distance between weights dk and wk. The linear form of F gives its name to 
this method, and the calibrated estimator is therefore the generalised regression estimator:

Ŷ reg=Ŷ HT+(X − X̂ HT) B̂ s      where B̂ s=(∑k∈ s dk xk xk
' )
−1

(∑k∈ s dk xk yk)
This is the quickest method because Newton’s algorithm always converges after two iterations. It can  

generate negative  weights, and the weights have no upper limit.

b) “Exponential” or “Raking Ratio” Method

D is then an “entropic” distance between weights dk and wk. Where the auxiliary variables are categorical 
variables for which the size of population levels is known, selecting function G results in a conventional  
adjustment method, proposed by Deming and Stephan [2], known as a raking ratio; it is also referred to 
(particularly in SAS) as IPF ("Iterative Proportional Fitting").

This method results in positive weights that have no upper limit,  which are generally higher (for the 
highest weights) than those obtained for the linear method.

3  is a threshold defined by the user (e.g. 10-4)
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c) ”Logit” Method

We select two real numbers for L and U such as L < 1 < U.

 if L < r < U ( and +  otherwise)  with 

This method is named after the logistic form for function F and ensures that the ratios of weights w k /dk 
are included in interval ]L, U[. However, we cannot select a priori any values for L and U: in general 
there is a maximum value Lmax for L (less than 1), and a minimum value Umin for U (more than 1). These 
values depend on the data and the calibration margins: the more the sample structure varies from that of 
the real population one as regards calibration variables, the further these values are from 1.

d) “Truncated Linear” Method

We select two real numbers for L and U such as L < 1 < U.

   if L  r  U ( +  otherwise)          

This method ensures that ratios w k /dk fall within the interval [L, U], and as for the “logit” method, Lmax 

and Umin generally exist.

The logit and truncated linear methods are used most often, as they help to avoid over-weighting, which  
may reduce the robustness of estimations, and under-weighting, weights less than 1 or even negative,  
which may be obtained using the linear methods.

1.3 Precision

Calibrated estimators  Ŷ wall  have the same precision (asymptotic),  regardless of the method used: the 

variance approximate to  Ŷ wis  therefore equal  to the regression estimator  Ŷ reg:  the variance falls,  the 
higher the correlation between the variable of interest Y and calibration variables X1 … Xj … XJ.

If  we use a formula -  or  software -  to  estimate  the  variance of  the  Horvitz-Thompson estimator  for 
variable  of  interest  Y,  the  variance  of  Ŷ wis  obtained  by  replacing  yk values  in  the  formula  by  the 

regression residuals (weighted by the dkor calibration weights wk) for Y on Xj values in sample s.

2. Calibration in the Presence of Total Non-response

Total non-response is usually adjusted using re-weighting methods for respondent units. The two main 
calibration strategies that may be implemented in the presence of total non-response are as follows (see 
methodological note Adjusting for non-response by re-weighting, in particular §V. Margin calibration):

 calibration after adjusting for non-response: in the first instance, the total non-response is adjusted 
for by re-weighting, followed by a standard calibration using the non-response-adjusted responses 
dk
a=dk / p̂k,  where  p̂kare  estimates  of  the  probability  responses  (e.g.  using  for  example  the 

homogeneous response groups method);
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 “direct”  calibration  using  respondent  survey  weights. This  is  justified  where  the  calibration 
variables  contain  explanatory  variables  of  non-response,  and  where  a  particular  form of  non-
response model is assumed (generalised linear model linked to the chosen calibration function) 
(see Dupont [5]).

3. Penalised Calibration

(this paragraph borrows heavily from the presentation by Rebecq [8]; see also presentation by Rebecq [9] 
at the INSEE statistical methodology seminar from15 March 2016).

With penalised calibration, it is accepted that calibration is not completed perfectly on some margins in a 
way that facilitates convergence, thereby enabling an increase in the number of variables for which the 
estimate after calibration is “controlled”, while maintaining a narrow distribution of weight ratios. The  
method  (see  Beaumont  and  Bocci  [1],  and  Guggemos  and  Tillé  [7])  involves  releasing  calibration 
constraints and incorporating them within the optimisation programme. 

X̂ w=∑
k∈ s
wk xk denotes the vector of estimators of calibration variable totals using “calibration weights”. 

We use a cost vector C, equal in size to the number of calibration variables J, and diag(C) denotes the 
diagonal matrix of dimensions JJ where the diagonal coefficients are values of vector C.

The penalised calibration program is written as follows:

min
wk

∑
k∈ s
dkG(w k /dk)+λ ( X̂ w− X) ' diag(C)( X̂w− X )

Parameter  is a value between 0 and + and represents the relative importance assigned to the distance 
between  final  weights  and  initial  weights  (the  first  part  of  the  function  should  be  minimised),  by 
comparison with the deviation at margins X of adjusted estimates  X̂ w (the second part of the function 

should be minimised, the “cost” part). Where  +, the cost term is preponderant: margin constraints 
are  satisfied  first  of  all,  which  removes  weight  ratios  of  1.  Where   0,  the  distance  term  is 
preponderant: weight ratios approach 1, but margin constraints are released to a large extent.

The cost linked to a calibration variable Xj increases, the more we wish to see “close” proximity between 
X̂ jwand the total Xj. By setting an infinite cost, we can require an exact calibration.

The penalised calibration may be implemented using the R Icarus package. The user selects the cost  
vector and the value of a gap  parameter that gives a maximum value for the distribution range for weight 
ratios: the programme then determines the highest value for . It is not (at present) possible to impose a 
priori an estimation error for calibration variables: statisticians adjust both cost and gap parameters to  
empirically obtain a satisfactory solution.

We can use a number of distance functions G. But using a “bounded” distance is not necessary on account 
of the gap parameter. The two methods proposed by Icarus are therefore the linear method, for which an 
analytical solution exists, and the exponential method (Icarus uses the ICRS algorithm described by Bocci 
and Beaumont).
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4. Practical Aspects of Calibration

4.1 Calibration Variables

A variable may be used in a margin calibration on the dual condition that it is available for all sample  
observations used in calibration, and that its population total is known. It could therefore be variables on  
the survey frame, or variables measured when collecting survey data and for which the total is known 
through  other  sources.  In  the  latter  case,  it  is  essential  that  the  variable  available  on  the  survey  
corresponds exactly to the variable for which the total is known: variables must be measured at the same  
time, according to the same concepts, the total that is settled on must correspond to the population that the 
sample aims to describe.

Ideally, the exact total should be known. It may also be estimated using another survey where such a  
source can be used to obtain more accurate estimators than the survey to which calibration has been  
applied. In practice, we may use a survey to calculate margins for another survey provided that the sample 
for the first survey is ten times larger than that for the second. Therefore, for INSEE household surveys,  
many calibration margins are calculated using the Labour Force Survey (LFS).

4.2 Out-of-scope Units and Calibration

Due to imperfections in the sample frame from which samples are taken, units surveyed may not actually 
belong within the survey’s target population (i.e. the survey “scope”): businesses that have shut down all 
operations, accommodation units that are vacant or used as a secondary residence are typical examples of  
out-of-scope units in INSEE surveys. Out-of-scope units are most often detected at the collection stage.

Where the margins used in calibration are taken from the  sample frame, out-of-scope units detected in 
collection must be used in calibration: margins calculated in the sample frame are in fact relative to a 
population that contains both out-of-scope units and units within the survey scope. If, on the other hand,  
margins only relate to the survey scope, out-of-scope units must not be used in calibration. Where margin 
calibration uses margins relating to the survey scope as well as margins calculated using the sample 
frame, the out-of-scope sample units detected in collection must be used in calibration, but,  for these 
observations, the values of calibration variables for margins relating to the scope are set to 0.

5. Examples

5.1 Annual Sectoral Surveys

Annual Sectoral Surveys (ESAs) are used to provide a breakdown of annual turnover figures for French 
companies by business area. The survey includes approximately 160,000 companies, of which half - the 
largest - are systematically collected (probability of inclusion set to 1), while the other half is selected at 
random from French small and medium-sized enterprises. 

After  applying  methods  for  non-response  adjustment  methods  and  handling  prominent  values  (see 
methodological note  Non-response adjustment through re-weighting and Handling prominent values in 
surveys), calibration is completed: insofar as possible, it consists of calibrating non-exhaustive strata in  
the survey for the total annual turnover per NAF (2008) group and the number of units per division of the 
NAF 2008 in the  population without  exhaustive strata.  For  this,  we use the Calmar  macro with the 
truncated linear methods as the default parameter, forcing weight ratios to stay within the range [0.5; 2].  
Where  the calibration  does  not  converge,  we  widen the weight  ratio  bounds,  and  if  this  is  still  not 
sufficient, sectors are grouped together in calibration. 
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5.2 Household Surveys on Information and Communication Technology (ICT)

This annual survey combines a number of collection methods: a sample of 3,500 households is surveyed 
by telephone, a sample of 22,500 households is surveyed online/by hard-copy questionnaire. Samples are 
calibrated after adjusting for non-response, at individual level, for metropolitan France and separately for  
overseas France. The data used in calibration are those from the Labour Force Survey (LFS) from year N-
1.

For metropolitan France, the calibration variables selected are the following: cross-tabulations for sex-age 
(14 levels), sex-qualification (nine levels), age-qualification (seven levels), Social categories (11 levels), 
size of urban area crossed with the category of municipality in urban zones (eight levels), size of urban  
area (eight levels), new region (12 levels), number of persons aged 15 or over in the household crossed  
with the three main age groups (nine levels), household type (based on Eurostat definition - four levels)  
and nationality (two levels).

For overseas France, the calibration variables selected are the crossing of sex and age for all overseas  
departments and territories (nine levels),  the qualification for all  overseas departments and territories 
(four levels), the Social categories (nine levels), population distribution by sub-departmental geographic 
areas (15 levels in total) and the number of households.

5.3 National Survey on Youth Resources (ENRJ)

(This paragraph is an extract from an internal INSEE note by Gros [6]).

The ENRJ survey was conducted by DREES and INSEE between 1 October and 31 December 2014. It  
describes the resources and living standards of young adults aged between 18 and 24 in France, living in 
ordinary housing or community accommodation.

The only reliable and accurate source of data available to INSEE in this specific topic is the age pyramid 
by sex dated 1 January 2015 based on the 2014 demographics report (Census). Figures collected using 
administrative sources consist  more of calibration data than calibration margins per se:  possibility of  
double-counting  for  some variables,  concepts  that  differ  slightly  between administrative  sources  and 
variables taken from survey for others. It was therefore decided to use penalised calibration, as follows:

 exact calibration for the age pyramid by sex as of 1 January 2015;

 approximate calibration for a certain number of administrative datasets: number of people with a 
Bachelor’s degree by sex, number of people with a Bachelor’s degree by field of study, number of 
people enrolled in university by sex, number of people enrolled for the higher technical certificate 
(BTS) by sex, number of people enrolled and business schools or engineering schools, number or 
bursaries based on social criteria by sex, number of single people receiving housing benefit (APL) 
and the number of young women receiving a basic allowance under the Early Childhood Benefit  
Programme (PAJE).

The penalised calibration makes it possible to contain the weight ratios within the [0.2; 1.8] interval and  
to  ensure  exact  calibration  on  the  age  pyramid  while  adjusting  for  the  main  imbalances  that  were  
observed in the calibration data when the age pyramid by sex is adjusted solely by post-stratification.
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