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Abstract – Population projections are performed regularly by national statistics institutes. 
In France, the most recent projections were produced by Insee in 2016 using a deterministic 
approach based on 27 different scenarios. In this article, we propose a new approach, which 
combines probabilistic population projections and a greater use of the Bayesian paradigm in 
order to quantify the uncertainty of future population levels without resorting to scenarios. 
Using the components method, the mortality rate, fertility rate and net migration are projected  
independently by sex and age. These three components are modelled, taking account of registry 
data (number of births and deaths) and net migration data series. The results reveal that the popu‑
lation of metropolitan France will continue to grow, reaching a level of between 66.1 million and 
77.2 million inhabitants in 2070, with a probability of 95%.
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Population projections are performed 
regularly by statistics institutes around the 

world, as well as certain international organisa‑
tions such as the United Nations (UN), which 
has published World Population Prospects 
(UN, 2017) every two or three years since 1951. 
Population projections offer many benefits and 
they have numerous users. They are primarily 
used to predict the possible future population 
of a region, a country or the entire world under 
certain assumptions, in terms of both number 
of inhabitants and structure. In the short to 
medium term, these projections form the basis 
for economic and social planning, such as pen‑
sion funding (COR, 2017) or the construction 
of public infrastructure. They also form an 
essential part of certain other exercises, such as 
economic, climate or environmental projections.

In the case of France, the most recent offi‑
cial projections date from 2016 (Blanpain & 
Buisson, 2016a ; 2016b) and provide an indica‑
tion of what the population will be in 2070 if past 
trends continue, with different variants on these 
assumptions (see Blanpain in this issue). Details 
of the projections by region, and in particular 
those for metropolitan France, are only available 
for the period from 2013 to 2050. This article 
aims to explore a new method for projecting the 
population of France: probabilistic projections. 
The proposed approach is said to be probabilistic 
since it allows the uncertainty surrounding future 
population levels to be quantified. This is where 
it differs from the traditional approach, which 
is a set of deterministic projections based on 
different scenarios. The fundamental difference 
between these two approaches is not so much the 
results themselves, but the way in which they are 
interpreted and used.

Probabilistic projections are based on statistical 
models, the majority of which are parametric. 
The uncertainty surrounding some elements 
making up the population can be captured by 
error terms, as is the case with time series, but 
it can also come from Bayesian inference of 
the model’s parameters. The aim is to quantify 
the level of uncertainty surrounding the future 
population. This can be achieved using the 
stochastic approach, the Bayesian approach or 
even a combination of the two. In this article, we 
use stochastic models with Bayesian inference 
of the parameters.

In a letter to the editor of the Journal of Official 
Statistics, a group of demographers and 
academics from various countries highlighted 
the contributions and challenges of probabilistic 
projections in demography and called for more 

research and practice in this area by statistics 
institutes (Bijak et al., 2015). They highlighted 
the fact that probabilistic projections have already 
been developed and used successfully in other 
disciplines, such as meteorology, climatology 
and even aviation. Bayesian statistics are also 
taking their time in breaking through into the 
field of demography. Although Bayes’ theorem 
was established more than 250 years ago, it is 
only recently, with the appearance of MCMC 
(Markov Chains Monte‑Carlo) algorithms in the 
1980s and the explosive increase in computer 
processing power, that Bayesian inference has 
been used (Bijak & Bryant, 2016).

Some statistical institutes have already adopted 
the approach aimed at producing probabilistic 
population projections for their official statistics. 
This is the case in the Netherlands and New 
Zealand in particular. The Netherlands started 
producing probabilistic projections based on 
stochastic methods in 1998. New Zealand has 
also been reporting probabilistic population 
projection results since 2012 (MacPherson, 2016; 
Dunstan & Ball, 2016). The UN, which develops 
projections for all countries, eventually switched 
from a deterministic to a probabilistic method 
in 2014 (Costemalle, 2015). Furthermore, some 
elements of its projections are based on Bayesian 
inference.

The overwhelming majority of population 
projections are based on the component method, 
which consists of producing separate projections 
for the three key components of population 
dynamics, namely fertility, mortality and migra‑
tion. The population at a given time is broken 
down into sex and age categories and is equal to 
the population during the previous period plus 
births and immigrants and minus deaths and 
emigrants. In this way, it is possible to chart the 
development of the population and its structure 
by sex and age category from one period to 
the next. In order to achieve this, the number 
of births by sex must be determined for each 
period, along with the number of deaths and the 
net migration by sex and age group. As regards 
births and deaths, the most common methods are 
based on projected fertility and mortality rates. 
However, probabilistic population projections 
remain an active area of research: there is no 
single method; on the contrary, there are almost 
as many approaches as there are types of data 
and they differ from one country to the next.

In the first part of this article, we will highlight 
the key differences between deterministic and 
probabilistic projections before going on to 
describe some of the different approaches that 



ECONOMIE ET STATISTIQUE / ECONOMICS AND STATISTICS N° 520-521, 2020 31

Bayesian Probabilistic Population Projections for France 

have been developed in demography with respect 
to probabilistic population projections. The 
second part is dedicated to describing French 
mortality, fertility and net migration data, and the 
third part looks at the presentation and valida‑
tion of the models used for each of the three 
components. We finish by presenting the results 
of the probabilistic projections obtained in this 
manner for France, before going on to discuss 
the assumptions within the models.

1. Deterministic and Probabilistic 
Projections and Developments in 
Demography
Predicting the future is a difficult task and has 
given rise to the development of many different 
methods over the centuries. The most recent and 
sophisticated methods are based on mathematical 
models that attempt to detect certain patterns 
or invariants in the data and to extrapolate the 
trends observed, while also respecting certain 
constraints that may be imposed. Both deter‑
ministic and probabilistic projections require a 
certain degree of modelling of observed data and 
differ only in the nature of the forecasts made.

1.1. Deterministic and Probabilistic 
Approaches: Different Ways of Addressing 
the Future

In the first instance, what we are looking to 
project depends, from a deterministic standpoint, 
on certain parameters. The selection of these 
parameters represents a hypothesis that is also 
referred to here as a scenario. A scenario is then 
given detailing the way in which these param‑
eters are considered most likely to develop on the 
basis of accumulated knowledge, expert opinions 
and intuition. A given scenario corresponds to 
one single possible projection, and the relation‑
ship between the two is deterministic. In cases 
where the scenario plays out as expected, the 
projection will be certain. Deterministic projec‑
tions answer the question: “What would happen 
in the future if such a scenario were to occur?”. 
Extreme scenarios can therefore be created to 
see how the future would pan out if they were 
to come true. Deterministic projections are thus 
a formidable tool when it comes to exploring 
the future on the basis of predefined scenarios. 
Any uncertainty in the projection then relies on 
the scenario coming true. Possible scenarios are 
formulated, but it is impossible to know how 
likely they are to occur. It could even be argued 
that the probability of them coming true is zero 
(if the values are continuous) or very low (if the 
values are discrete). The degree of probability 
is estimated intuitively and is reflected in the 

terms used to describe these scenarios: demog‑
raphers refer to the “central” scenario, which is 
the scenario considered the most plausible based 
on current knowledge, and “extreme” scenarios.

Conversely, probabilistic projections are based 
on models that attempt to take account of the 
uncertainty stemming from a lack of knowledge 
of certain aspects of the projections. These models 
are based on assumptions made on the basis of 
expert judgement and intuition. The underlying 
assumptions on which models for probabilistic 
projections are based are the equivalent of the 
scenarios used for deterministic projections. The 
advantage of probabilistic projections is that 
they make it possible to quantify the uncertainty 
based on past developments and to extrapolate 
it into the future to provide confidence intervals 
for the projections. The interpretation and use of 
probabilistic projections therefore differs from 
that of deterministic projections.

By way of an example, weather forecasts have 
long been making use of probabilistic projec‑
tions: we are not only told whether or not it 
will rain the next day, but also the probability 
that rain will fall (Raftery, 2014). Since future 
events are inherently uncertain, indicating the 
probability of their occurrence in view of current 
knowledge provides more information than a 
deterministic projection based on a scenario. In 
economics in particular, time series are used as 
a means of producing probabilistic projections: 
in the case of a simple random sampling method, 
for example, we know that the variance increases 
with the square root of time.

By adding error terms to the models, it is there‑
fore possible to create stochastic probabilistic 
projections. Another method for quantifying 
uncertainty is to use the Bayesian paradigm. 
Under this method, the model parameters are 
viewed as random variables, in the same way as 
error terms in stochastic models. Bayesian infer‑
ence then involves estimating the a posteriori 
distribution of these parameters, i.e. after the 
data have been observed. This distribution gives 
possible values for the parameters, together with 
their degree of probability. It differs from the 
a priori distribution, which is the distribution 
given by the modeller and which is intended to 
reflect the knowledge of the problem before any 
data has been observed.

1.2. Probabilistic Projections in Demography: 
A Wide Variety of Models in Practice 

Population projection techniques can be 
divided into three categories (Booth, 2006). 
The first group includes methods based on the 
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extrapolation of trends, which seek to extend the 
trends identified in the past, in most cases in a 
linear fashion. They are based solely on past data 
and do not attempt to explain the mechanisms 
underlying the developments. They often prove 
to be effective. The second set of methods used 
for population projections involves establishing 
long‑term trends. These methods are based on 
the expectation that the future will unfold in a 
certain way. This may be backed up by expert 
opinions, which assess what could be expected 
to happen in the future on the basis of current 
knowledge, or on people’s intentions, such as 
those measured by fertility intention surveys 
(Régnier‑Loilier & Vignoli, 2011). Finally, the 
last category of projections is made up of the 
structural models, which attempt to explain the 
mecanisms of population changes using exoge‑
neous variables. These exogeneous variables 
must then be projected in accordance with one of 
the three projection categories. The approaches 
often combine several of these techniques and 
the techniques used differ according to the 
components (mortality, fertility and migration) 
that are to be projected.

A classic method of projecting mortality was 
developed by Lee & Carter (1992) and consists 
in decomposing the change in the logarithm of 
mortality rates into an age effect and a time 
effect, specific to each age. The time effect 
is then considered as a time series for which 
the parameters are estimated. By calculating 
or simulating the future values of this time 
effect on the basis of the models used a very 
large number of times, it is possible to obtain a 
probabilistic projection. The basic idea of this 
approach is to capture the regular changes in the 
data and to extrapolate these regularities. The 
Lee‑Carter method has since been used very 
frequently to project mortality, as well as to 
project fertility and migration. Wiśniowski et al. 
(2015) put forward a more extended version of 
this, adding a generation effect, which can be 
applied to all three components of population 
change. In addition, these authors have proposed 
that these projections be carried out in an 
entirely Bayesian framework. The Lee‑Carter 
model has also been generalised by Hyndman 
& Ullah (2007), who break down the logarithm 
for mortality rates or fertility rates into key 
components before extending the coefficients 
of each of those components using time series. 
Furthermore, Hyndman & Booth (2006) suggest 
performing a Box and Jenkins transformation 
on the rates studied with a view to generalising 
the log transformation. This approach is entirely 
stochastic.

The whole point of probabilistic projections 
is to allow the degree of probability of future 
projections to be quantified. In 2001, Lutz et al. 
(2001) announced that the world population is 
likely to stop growing by the end of the century. 
More specifically, their stochastic models and 
calculations predict that there is an 85% prob‑
ability that the world population will begin 
to decline by the end of the century. The UN, 
which regularly publishes population projec‑
tions, began using a probabilistic and Bayesian 
method in 2014. The results give a different 
view of the development of the population 
in the long term. In fact, they show that the 
world population is unlikely to have stopped 
growing by 2100 (Gerland et al., 2014). The 
methodology used differs from that applied 
by Lutz et al. (2001): the aggregated values, 
which are life expectancy at birth and the total 
fertility rate (TFR), are projected directly in 
a first step. These indicators are then decom‑
posed in sex‑specific and age‑specific mortality 
rates and age‑specific fertility rates. In order to 
project life expectancy, the amount by which 
life expectancy increases every five years is 
modelled by a double logit function on the basis 
of actual life expectancy and a large number of 
parameters. These parameters are estimated by 
Bayesian inference, which leads to an a poste‑
riori distribution of increases in life expectancy 
and therefore an a posteriori distribution of 
life expectancy itself by 2100 (Raftery et al., 
2013). This is an example of a probabilistic 
projection that does not use stochastic terms, 
but is instead based solely on parametric 
modelling and Bayesian inference. For its part, 
the TFR indicator is modelled according to a 
three‑phase process of development: a phase 
of high fertility rates, a phase of rapid fertility 
decline to below the generation replacement 
level, and a phase of stagnation of the fertility 
rate with a long‑term convergence towards a 
level of 2.1 children per woman (Alkema et al.,  
2010).

It therefore appears that there are numerous 
models available to project each of the three 
components. Working on the assumption that 
no single model can capture the full range of 
possible assumptions about mortality trends, 
especially when these assumptions are not 
consistent with one another, Kontis et al. (2017) 
made use of 21 different probabilistic projection 
models, the results of which were then weighted 
in accordance with the performance of each 
of the models, in order to ultimately obtain a 
single probability distribution for the desired 
indicators.
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2. Data for France
To ensure that we have long series, we will 
restrict ourselves to the area of metropolitan 
France. We therefore have, for the years 1962 
to 2013, the total population on 1 January of 
each year, the annual net migration, the number 
of deaths and the number of births by the age 
of the mother, all detailed by sex and age.1 We 
have selected the same projection horizon as 
that used for the most recent official projec‑
tions for France (Blanpain & Buisson, 2016b). 
The aim is therefore to project the 2014 popu‑
lation to 2070. Between 1962 and 1998, the 
data are not broken down by age beyond 100 
years. From 1999 onwards they are broken 
down in detail up to 110 years. We then chose 
to retain the one‑year age categories since the 
data are available, and we created a higher age 
category representing people 100 years of age 
and older. In the remainder of this section, we 
will describe the net migration, mortality and 
fertility data, highlighting invariants, trends  
and irregularities.

Net migration is the number of people in a 
given year who come to live in France from 
outside of metropolitan France, regardless of 
their nationality, minus the number of people 
living in metropolitan France who move abroad. 
It is undoubtedly the most difficult component 
to measure, because, although the number of 
people entering the country can be estimated 
using the population census (Brutel, 2014), we 
do not know how many have left. Net migra‑
tion can therefore be calculated as the difference 
between the changes in the population and the 
natural balance. Unlike many other European 
countries, France does not have a population 
register and must therefore rely on the popula‑
tion census to estimate migration flows. As the 
census was only conducted once every 7‑8 years 
or so until 1999, it was not possible to directly 
calculate the change in the population from 
one year to the next. In 1962, net migration 
was exceptionally high as a result of approxi‑
mately 860,000 French nationals returning from 
Algeria; from 1963 onwards, net migration has 
been consistently positive, but the numbers have 
been much lower: it averaged 64,000 over the 
period from 1963 to 2013. Net migration appears 
to have remained stable on average from the 
1990s onwards, although there have been some 
large fluctuations (Figure I), largely due to the 
various policies pursued, but also as a result of 
the economic and international context. For the 
period from 1990 to 2013, net migration was, on 
average, 72,000 and 79,000 for the last ten years 
available (2004‑2013).

In order to describe mortality, the number of 
deaths must be related to the corresponding 
population at risk. This population is counted 
in person‑years and takes account of the total 
time spent by all persons residing in France. It 
is approximately equal to the population present 
on 1 January, plus half of the net migration. By 
relating the number of deaths to this population, 
we then obtain the mortality rates, which can 
be broken down by sex, age and year. Mortality 
rates grow quasi‑exponentially from the age of 
25 upwards (Figure II). Before the age of 25, 
the profile is different due to infant mortality, 
which is higher for newborns. Mortality rates 
decline from birth until around 10 years of age, 
before rising steadily. At around the age of 18, 
the mortality of men becomes significantly 
higher than that of women, and the gap remains 
present throughout life, with a greater or lesser 
magnitude depending on age. 

The logarithm of mortality rates, for a fixed age 
and sex, decreases in an almost linear manner 
over time (Figure III). This is especially true for 
older age groups, but does not seem to be quite 
the case for younger age groups. For example, 
the logarithm of the mortality rate at 10 years of 
age decreases faster and faster. Conversely, at 
age 30, the logarithm of the mortality rate slows 
its decline until it stagnates for males from the 
early 1980s to the mid‑1990s, at which point  
 

1.  2013 is the latest year for which all these data were final when the pro-
jections presented in this article were carried out, in 2017. In particular, the 
figure for net migration was not yet available for 2014. We have not used 
the provisional data, then available up until 2016, but which are revised 
from one year  to  the next  before being  final  and  therefore of  a different 
nature from the final data.

Figure I – Changes in net migration  
between 1963 and 2013
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Sources and coverage: Insee, population estimates and civil registry 
statistics; Metropolitan France.
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mortality declines sharply for that age group 
and has continued to decline steadily and in an 
apparently linear fashion since. This stagnation 
in mortality among young adults in the 1980s 
and 1990s, when the general trend was towards 
a steady decrease in mortality, is linked to the 
AIDS epidemic, which reached France in the 
early 1980s. In general, as mortality rates are 
steadily declining, life expectancy at birth is 
increasing each year, and more rapidly for men 
than for women (Blanpain, 2016), although life 
expectancy sometimes decreases from one year 
to the next, as was the case in 2015 for cyclical 
reasons (Bellamy & Beaumel, 2016).

Since the early 1970s, the TFR2 has declined 
sharply from 2.9 children per woman in 1964 

to 1.8 children per woman in 1976 (Figure IV). 
It has since stabilised at an average of around 
1.85 children per woman. Nevertheless, an 
upward trend has been observed in the TFR since 
the mid‑1990s.

The fertility rate at a given age is defined as the 
ratio of the number of babies born to mothers 
of that age to the number of women of the same 
age in the year in question. This number corre‑
sponds to the number of women on 1 January 
of the year plus half of the corresponding net 
migration and minus half of the deaths recorded 
for this population. The profile of age‑specific 
fertility rates follows a bell curve: the probability 
of having a child in a given year increases with 
age from 15 years until it peaks, after which it 
declines continuously, reaching zero or close to 
zero around 50 years.

Over time, this age distribution tends to shift to 
the right: the age at which peak fertility is reached 
increases (Figure V). In 1970, the fertility rate 
was at its highest at 24 years of age, while in 
2013, the peak was reached at the age of 30. The 
maximum level of fertility reached during the 
year has barely changed since the mid‑1970s: 
it fluctuates around 0.15. As the fertility peak 
moves to the right, the distribution of age‑specific 
rates becomes increasingly symmetrical, as 
evidenced by the measure of skewness, which 
is rapidly decreasing towards 0 (Figure VI). 

2. The total fertility rate (TFR) is calculated as the sum of the age-speci-
fic  fertility  rates.  It corresponds  to  the average number of children  that a 
woman would have during her lifetime if the probability of giving birth at a 
given age corresponded to the fertility rate at that age.

Figure III – Changes in the logarithms of mortality rates from 1962 to 2013 for different ages
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Figure II – Logarithm of mortality rates  
in 2013 by sex and age
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Unlike mortality rates, changes in fertility rates 
do not occur in a regular manner over time. For 
example, the fertility rate at 30 years of age fell 
between the early 1960s and the mid‑1970s; 
however, it has been increasing since then, albeit 
with a slowdown from the 2000s onwards. The 
fertility rate at 20 years of age had been declining 
since the 1970s, but in the late 1990s rebounded 
slightly for a few years before declining again, 
but at a much slower pace than in previous 
decades. The changes are neither monotonous 
nor linear, which highlights how difficult it is 
to extend these curves into the future.

To summarise, net migration in metropolitan 
France appears stable over the long term, but 
with significant fluctuations that seem difficult to 
predict. Mortality has been moving in the same 
direction for several decades, with an almost 
linear decrease in the logarithm of mortality rates 
at all ages and a narrowing of the gap in life 
expectancy between women and men. Recent 
fertility trends are more complex to identify, but 
the evidence suggests that the TFR has stabilised 
at an average level of just under 2 children per 
woman and that the distribution of age‑specific 
fertility is changing continuously with a shift in 

Figure IV – Changes in the total fertility rate  
from 1962 to 2013
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Figure V – Age-specific fertility rate  
in 1962 and in 2013
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Figure VI – Changes in peak fertility, age at which peak fertility is reached and skewness  
of the age distribution of fertility rates between 1962 and 2013
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peak fertility to higher ages and an increasingly 
symmetrical distribution (Figure VII). In the 
next section, we propose a model for each of the 
three components of population change, taking 
account of these observations and drawing upon 
models that have already been developed inter‑
nationally and which we will describe briefly in 
the third section.

3. Methods and Models
In the remainder of this article, we will use the 
following notations:

P(a,n,s): the number of people on 1 January of 
year n, of sex s born in year n‑a;

D(a,n,s): the number of deaths in year n, of 
people of sex s and born in year n‑a;

N(a,n,s): the number of live births of infants of 
sex s during year n and whose mother was born 
in year n‑a;

M(a,n,s): the number of persons entering metro‑
politan France minus the number of people 
leaving metropolitan France during year n, of sex 
s and born in year n‑a. This is the net migration in 
year n, for persons of sex s and born in year n‑a.

To simplify the subsequent notations, we define 
P(0,n,s) as the number of live births in year n 
of babies of sex s. Furthermore, D(0,n,s) and 
M(0,n,s) are well defined by the above descrip‑
tion and correspond respectively, for each year n 
and sex s, to the number of deaths of babies born 
in year n and to the number of newborns entering 
the country minus the number of newborns 
leaving the country. It will be assumed that the 

ages of women at childbirth are between 15 and 
55 years inclusive, meaning that N(a,n,s)=0 for 
a≤14 and a≥56.

In addition, populations at risk are defined for 
deaths and births. Populations at risk are counted 
in person‑years and depend on the number of 
people observed, but also on the period of time 
over which these people are present. For deaths, 
this corresponds to the population on 1 January 
for the year in question, plus half of net migra‑
tion (assuming that inflows and outflows are 
evenly distributed throughout the year).

R a n s P a n s M a n sD , , , , . , ,( ) = ( ) + ( )0 5 , if a ≥ 1 
R n s P n s M n sD 0 0 5 0 0 5 0, , . , , . , ,( ) = ( ) + ( ) ,

where a = 0.

For births, the number of person‑years at risk is 
the average number of women during the year 
in question, assuming that migration flows and 
deaths remain uniform:

R a n P a n women M a n women

D a n women
N , , , . , ,

. , , .
( ) = ( ) + ( )

− ( )
0 5

0 5

We also note M n M a n s
a s

( ) = ( )∏
,

, , ,

N a n N a n girls N a n boys, , , , ,( ) = ( ) + ( )  and 
N a n N a n s

a
, , ,( ) = ( )∏ .

When noting normal distributions, we will 
indicate the standard deviation (rather than the 
variance).

3.1. Migration

The total net migration is directly projected 
using a first‑order autoregressive model, where 
Mlt represents the long‑term net migration and 
εM represents white noise:

M n M M n M nlt M lt M( ) = + −( ) −( ) + ( )ρ ε1

ε σM

i i d

Mn N( ) ( )~ ,
. . .

0

In order to ensure a stationary process, the 
constraint ρM ≤ 1 is imposed. This modelling 
reflects the fact that it is estimated that net 
migration will continue to be stable on average 
and will oscillate around a long‑term trend. 
The amplitude of possible future oscillations 
is determined by past amplitudes. Furthermore, 
a very informative a priori is set with regard 
to the long‑term trend by assuming, as was 
the case in the work of Blanpain & Buisson 
(2016a), that this can be estimated from the 
average net migration over the recent period, 
i.e. 80,000 persons. The a priori distribution for 
the long‑term trend is therefore Mlt ~ N (80,000; 

Figure VII – Changes in fertility rates  
at different ages between 1962 and 2013
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10,000). The parameters Mlt, εM, ρM and σM are 
estimated by means of Bayesian inference 
based on the net migration for the period  
1995‑2013.

To project the total net migration, the model 
parameters are randomly drawn 1,000 times 
according to their a posteriori distribution and 
for each set of parameters, the development 
of net migration is simulated according to the 
first‑order autoregressive process. Once the 
net migration has been projected, it is broken 
down by sex and age in accordance with fixed 
rates calculated on the basis of the distribution 
of net migration by sex and age over the recent 
period and smoothed, as described in Blanpain 
& Buisson (2016a).

3.2. Mortality

As has already been mentioned, the logarithm of 
age‑specific mortality rates appears to develop 
in a linear manner over time. Nevertheless, 
mortality rates develop at a different rate for each 
age over time. The number of deaths observed is 
directly modelled in accordance with Poisson’s 
law, which is based on the mortality rate and the 
population at risk. The latter corresponds to the 
number of person‑years present in metropolitan 
France in the year in question. Poisson’s law 
is currently used to model a number of events 
occurring over a given period of time. It is 
often used to model the number of deaths in 
demographic work. The following model (devel‑
oped by Bryant & Zhang, 2014) is used, where 
μD(a,n,s) corresponds to the mortality rate for 
year n for persons of sex s and age a:

D a n s Poisson a n s R a n sD D, , ~ , , , ,( ) ( ) ( )( )µ

log , , , ,, , ,µ β β β β εD a
age

a s a n Da n s a n s( )( ) = + + + +0
1

age:sex age:year (( )
log , , , ,, , ,µ β β β β εD a

age
a s a n Da n s a n s( )( ) = + + + +0

1
age:sex age:year (( )

εD,1 are independent and identically distributed 
error terms according to centred normal distribu‑
tion and standard deviation σD,1. The parameter β0 
is a constant, the parameter βage gives the average 
age distribution of the logarithm of mortality 
rates. Finally, there are two terms that cross two 
dimensions: βage:sex, which allows the specific 
effect of sex to be estimated for each age and 
βage:year, which is a time effect specific to each age. 
It should therefore be noted that the development 
of the logarithm of age‑specific mortality rates 
over time is the same for both women and men, 
since no term that crosses the dimensions of year 
and sex has been specified. This is because we 
wanted to limit the number of parameters to be 
estimated. When a term crossing the year‑sex 

dimension was introduced, it was found that the 
a posteriori distribution was not correctly esti‑
mated due to a non‑convergence of the Markov 
chains. At a third level, some of the parameters 
are modelled by means of dynamic linear models. 
For the βage:year parameter, this allows the develop‑
ment over time to be broken down, by age, into 
a level (θage :year) and a trend (δage:year):

β θ ηa n a n a n,
:

,
: ,age year age year= + ( )

θ θ δ υa n a n a n a n,
:

,
:

,
: ,age year age year age year= + + ( )−1

δ δ ωa n a n a n,
:

,
: ,age year age year= + ( )−1

The terms η, ν and ω are independent error terms 
that follow centred normal distribution.

To project age‑specific mortality rates into the 
future, once the a posteriori distribution of all 
the model parameters has been estimated, it is 
sufficient to generate new trend terms, followed 
by new level terms and finally new βage:year 
parameters, up to the desired horizon.

3.3. Fertility

For fertility, we chose to proceed in three stages. 
First of all, the TFR is projected according to a 
first‑order autoregressive model. The UN uses 
the same method for its third stage of fertility 
change, on the assumption that the TFR tends 
towards 2.1 in all countries (Alkema et al., 
2010). When compared with the method used 
by the UN, we have chosen to also estimate the 
parameters of the model by means of Bayesian 
inference rather than by maximum likelihood. 
We therefore remain within an entirely Bayesian 
framework for all our estimates and projections. 
The model is as follows:

ICF n ICF ICF n ICF nlt F lt F( ) = + −( ) −( ) + ( )ρ ε1

where ICF n
N a n girls N a n boys

R a na F

( ) =
( ) + ( )

( )=
∏

15

55 , , , ,
,

 

is the total fertility rate in year n. As was the case 
for net migration, after estimating the Bayesian 
inference, we simulate 1,000 possible trajecto‑
ries for the development of this index up to the 
desired horizon.

The second stage consists of projecting the 
age‑specific fertility rates μF, independently of 
the projection of the TFR. As is the case with 
mortality, these are defined by modelling births 
by means of a Poisson process:

N a n Poisson a n R a nF F, ~ , ,( ) ( ) ( )( )µ

by way of a reminder, N(a,n) corresponds to the 
number of births in year n, given by mothers 
born in year n‑a. Following the method proposed 
by Bijak et al. (2015), which is based on the 
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Lee‑Carter method, we then modelled the loga‑
rithm of the fertility rate as the sum of a fixed 
age effect, a time effect for which the intensity 
and direction are different for each age, and a 
generation effect:

log , ,,µ α β κ γ εF a a n n a Fa n a n( )( ) = + + + ( )− 1

The time effect κ and the generation effect γ 
change in accordance with the first‑order autore‑
gressive processes:

κ ϕ ϕ κ ξn n n= + + ( )−0 1 1

γ γ ζn a n a n− − −= + + ( )Ψ Ψ0 1 1

where the error terms ξ and ζ follow normal laws 
of zero expectation. Once again, all parameters 
are estimated by Bayesian inference in order to 
subsequently produce 1,000 fertility rate simula‑
tions for each age and each future year. These 
projected rates extend linear trends, although the 
parameters ϕ1 and Ψ1 may, if they are strictly 
smaller than 1, cause the time effect or the gener‑
ation effect to cancel out in the long term. The 
estimates give an a posteriori distribution of ϕ1 
and Ψ1, which are very close to 1. This results in 
the fertility rates becoming abnormally high for 
certain ages, which leads to TFRs that are much 
higher than those projected in the first stage.

The third stage involves then correcting the 
age‑specific fertility rate for each year and 
aligning it to the TFR initially projected. In 
order to do so, we simply multiply all of the 
rates in a given year by a constant. Note that 
no constraint was added for the average age at 
childbirth, whereas Insee's projections retain a 
ceiling at 32 years old  based on experts' opinion 
(see Blanpain, this issue).

Lifetime fertility is based on the fertility rates 
of a given generation of women. Like the TFR, 
it is a synthesis of fertility rates at different 
ages. However, unlike the TFR, which is a 
cross‑sectional indicator, this is a longitudinal 
indicator and therefore requires the fertile life of 
an entire generation to be observed before it can 
be calculated. This therefore limits the number 
of observation points in the past. This is why we, 
like many other authors, decided to model and 
project the total fertility rate. Life expectancy is 
also a cross‑sectional indicator.

3.4. Projections Using the Components 
Method

The components method makes it possible to 
develop the population from one year to the next 
by noting that the population on 1 January of a 
given year is equal to the population on 1 January 
of the previous year, plus the number of births 

that took place during the previous year, minus 
the number of deaths and plus net migration. This 
translates into the following equations:
P a n s P a n s D a n s M a n s, , , , , , , ,( ) = − −( ) − − −( ) + − −( )1 1 1 1 1 1

P a n s P a n s D a n s M a n s, , , , , , , ,( ) = − −( ) − − −( ) + − −( )1 1 1 1 1 1

if a ≥ 1 and P n s N n s0, , ,( ) = ( ).
The number of deaths and births are obtained 
each year by means of random sampling in 
accordance with Poisson’s law (see models). 
In order to do this, the persons at risk must be 
identified for deaths and the women at risk in the 
case of births. We begin by calculating deaths 
for each age, with the exception of deaths among 
newborns. We then deduce the women at risk for 
each age between 15 and 55 years (in order to do 
so, we need to know the figures for net migration 
and the number of deaths). Finally, we calculate 
the number of deaths among newborns. The 
distribution of the number of births in a given 
year between male and female is determined by 
the sex ratio, which is set at 1.05 in accordance 
with past observations.

3.5. Validation of the Models

One way of testing the models used is to separate 
the data relating to the past into two categories: 
one part, approximately two‑thirds, is used to 
estimate the models and the remaining part, 
approximately one‑third, is used to compare the 
model estimates with reality.

In the case of mortality, we decided to estimate 
the model for the period from 1962 to 1995 and 
to compare the results during the period from 
1996 to 2013. For fertility, we estimated the 
models over the period from 1975 to 2000 and 
we compared the results from the period between 
2001 and 2013. It is clear that the logarithm of 
mortality rates is projected adequately at older 
ages (from around 35‑40 years of age), but 
that the model used presents decreases in these 
rates that are much slower than what is actually 
observed. This is because, at very young ages, 
the logarithm of mortality rates is not linear, but 
is instead slightly concave. Moreover, mortality 
rates for young adults more or less stagnated in 
the 1980s and 1990s, before falling sharply. The 
model was not able to predict this sudden drop.

As regards fertility, the TFR observed is well 
within the 95% confidence interval of the 
probabilistic projections of the TFR. However, 
when we look at the distribution of age‑specific 
fertility rates, it becomes apparent that the 
method used leads to a tighter distribution than 
is actually observed (Figure VIII). The deforma‑
tion of the distribution of age‑specific fertility 
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rates is therefore a little too pronounced in our 
projections.

4. Results of Bayesian Probabilistic 
Projections for France up to 2070
The parameters of the models for net migra‑
tion, mortality and fertility were estimated by 
Bayesian inference using the open source soft‑
ware, Stan and the R demest package published 
by the Statistical Institute of New Zealand.3 
We simulated 1,000 values for each of these 
parameters according to their a posteriori law. 
We then generated 1,000 possible evolution 
trajectories for net migration, sex‑specific and 
age‑specific mortality rates and age‑specific 

fertility rates. In the end, 1,000 estimates can be 
obtained for any demographic indicator derived 
from these three components, including the size 
of the total population. Confidence intervals 
of 95% or 80% are then derived from these, 
which contain 95% or 80% of the estimates, 
respectively.

4.1. Migration Projections: A Strong and 
Constant Uncertainty

Projected net migration follows a stable trajectory 
as this was specified in the model. The median 
of the 1,000 possible trajectories decreases in 

3. https://github.com/StatisticsNZ/demest

Figure VIII – TFR and age-specific fertility rates, observed (1962-2013) and projected (2001-2013)
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Figure IX – Net migration, past and projected

0
20
40
60
80

100
120
140
160
180
200
220
240

19
63

19
69

19
75

19
81

19
87

19
93

19
99

20
05

20
11

20
17

20
23

20
29

20
35

20
41

20
47

20
53

20
59

20
65

20
70

 

Thousands

Note: The dotted lines indicate the 2.5% and 97.5% quantiles and the solid line indicates the median of the a posteriori distributions. The light grey 
curve represents one of the 1,000 simulations.
Sources and coverage: Insee, population estimates and civil registry statistics (1962-2013), author’s calculations (2013-2070); Metropolitan France.

https://github.com/StatisticsNZ/demest


 ECONOMIE ET STATISTIQUE / ECONOMICS AND STATISTICS N° 520-521, 202040

the first few years of projections before rapidly 
stabilising at 79,000 (Figure IX). The confidence 
interval also remains constant over time: at a 
probability of 95%, net migration will remain 
at between 29,000 and 129,000 each year. This 
amplitude is due to the significant fluctuations 
observed in the past and slightly exceeds the 
minimum and maximum observed in 1996 and 
2006 respectively.

4.2. Mortality Projections: Little 
Uncertainty Given Past Developments

The model for mortality predicts that age‑specific 
mortality rates will continue to decline in a linear 
manner, following the same trend for both males 

and females (Figure X). The uncertainty in the 
projected mortality rates does not increase over 
time. This is because the variance in the level and 
trend errors v and ω is very small compared with 
the variance in the error term η. Errors therefore 
do not accumulate over time. This is due to the 
fact that the trends observed are highly linear.

Due to the constant reduction in mortality rates, 
life expectancy will continue to increase in the  
coming years for men and women alike. The 
results of the model indicate that, with a prob‑
ability of 95%, life expectancy at birth in 2070 
will be between 91.2 and 92.8 years for women 
and between 87.4 and 89.4 years for men 
(Figure XI). The gap in life expectancy between 

Figure X – Changes in the logarithm of age-specific mortality rates, estimated and projected
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Figure XI – Estimated and projected changes in women’s and men’s life expectancy  
and gender gap in life expectancy
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women and men will likely continue to narrow 
to reach 3.6 years in 2070 (between 3.3 and 
3.9 years with a probability of 95%).

4.3. Fertility Projections: Births to 
Older Mothers and More Symmetrically 
Distributed Around the Modal Age

The median long‑term TFR is 1.93, slightly 
below the mean of the a priori distribution, which  
is set at 1.95 (Figure  XII). According to the 
model used, the TFR will be between 1.63 and 
2.26 children per woman in 2070 at a probability 
of 95%. Unlike the projections for net migration 
and mortality rates, the confidence interval at 
95% becomes wider over time. The uncertainty 

with regard to future fertility therefore becomes 
higher, in spite of having set a long‑term TFR 
in the model.

The age‑specific fertility rates begin to stabilise 
from 2050 onwards (Figure XIII). The average 
age at childbirth rises rather quickly until around 
2040, after which the increase continues but 
at a slower and slower rate until it reaches a 
value of between 32.2 and 35.9 years in 2070 
(confidence interval of 95%). The distribution of 
age‑specific fertility rates therefore shifts more 
and more to the right and becomes increasingly 
symmetrical, as evidenced by the changes in the 
measure of skewness, the median of which is 
tending towards 0 (Figure XIV).

Figure XII – Changes in the total fertility rate, estimated and projected
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Figure XIII – Changes in the fertility rates, estimated and projected
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4.4. Total Population Projections: Growth 
Likely to Be Strong Until 2040 and Much 
Weaker Thereafter

The total population of metropolitan France will 
continue to grow until it reaches a level of between 
66.1 million and 77.2 million in 2070 with a 
probability of 95%, and between 68.1 million 
and 75.0 million with a probability of 80% (see 
Figure XV). The median projection corresponds 
to a level of 71.0 million inhabitants in 2070. The 
population of metropolitan France could there‑
fore increase continuously throughout the next 
fifty years, or it could increase before beginning 
to decline around 2050. According to the model 

used here, there is a 1% probability that the popu‑
lation will start to decrease from 2040 onwards 
(i.e. the population will reach its peak in 2040) 
and a 19% probability that this will occur in 2050. 
The uncertainty regarding the size of the popula‑
tion according to the model used is relatively 
minor until around 2040‑2050, after which it  
increases more rapidly in the years that follow.

The structure of the population will also change, 
as can be seen in the population pyramid for 
2070, the base of which is much straighter 
and thinner than the pyramid depicting current 
ages. The proportions of certain age groups will 
therefore decrease, particularly the youngest 

Figure XIV – Changes in the average age of motherhood  
and skewness of the age-specific distribution of fertility rates
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Figure XV – Past and projected changes in the total size of the population and annual population growth
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(see Figure XVI): the proportion of people 
aged 0‑19 years will continue to decrease slowly 
until it reaches a median level of 19% in 2070; 
20‑64‑year‑olds will follow the same pattern, 
with a median level of 50% in 2070. Conversely, 
the proportion of the population aged 65 and 
over will probably continue to increase until it 
exceeds the share of people aged under 20 in 
2070. This figure increased from 13% in 1962 
to 19% in 2013 and has the potential, with a 
probability of 95%, of making up between 28% 
and 33% of the population in 2070.

The population will therefore continue to age. The 
median age of the population, which was 41 years 

in 2013, could, with a probability of 95%, be 
between 44 and 50 years in 2070. As a result, the 
ratio of people aged 65 and over to people aged 20 
to 64 years is likely to rise sharply in the coming 
years. The rapid and linear increase in this ratio 
between now and the early 2040s is largely due 
to the ageing of the large generations born during 
the baby boom. In fact, people born at the start 
of the baby boom in 1946 turned 65 in 2011 and 
those born at the end of the baby boom in 1975 
will turn 65 in 2040. According to the models 
used, the ratio of those aged 65 and over to those 
aged 20‑64 years, which today stands at 0.33, will 
reach a value of between 0.56 and 0.67 in 2070  
with a probability of 95% (see Figure XVII).

Figure XVI – Age pyramid for 2070 and changes in the proportion of certain age groups
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Figure XVII – Changes in the median age of the population and the ratio  
of people aged 65 and over to people aged 20-64 years
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These probabilistic projections can be compared 
with the deterministic projections made by Insee. 
The deterministic projections concerning metro‑
politan France only cover the period from 2013 
to 2050.4 The central scenario adopted leads to a 
population that is slightly larger than the median 
of our probabilistic projections: according to the 
first projection, the population of metropolitan 
France would reach 71.7 million inhabitants in 
2050 and 70.5 million according to the second. 
Furthermore, the confidence interval estimated 
by the probabilistic projections is much lower 
than the interval between the high and low popu‑
lation scenarios, which are the extreme scenarios 
of the deterministic projections. The difference 
between the two extreme deterministic scenarios 
is 11.1 million inhabitants in 2050, whereas the 
confidence interval of the deterministic projec‑
tions for that same year is 5.7 million for the 
95% confidence interval and 3.6 million for the 
80% confidence interval.

4.5. Discussion

According to the models described in this article 
and the simulations carried out, the population 
of metropolitan France is expected to continue 
increasing in the coming decades. However, 
there is a non‑negligible probability that it will 
start to decline before 2070, although this is less 
likely than an increase or stabilisation. The struc‑
ture of this population is also likely to change: 
a general ageing of the population is expected 
due to increased life expectancy, a stagnating 
trend in the TFR and the continued arrival of 
baby boomers at retirement ages. The model 
used to project net migration is the simplest of 
the three models used. The lack of age‑specific 
data on people entering and leaving the country 
precludes the use of Poisson modelling to obtain 
the rates, as we did for the number of deaths 
and the number of births. In general, models for 
projecting net migration are less sophisticated 
and have been the subject of less research effort 
than those for mortality and fertility, since the 
available data are less rich. Nevertheless, it is 
worth noting that some countries, such as New 
Zealand in particular, which have detailed data 
concerning people entering and leaving the 
country, are starting to offer advanced model‑
ling of migration phenomena, taking account 
of a large number of parameters, such as the 
level of education attained by the population 
(Bryant & Zhang, 2014). Since our modelling 
is fairly simple, it follows that most of the past 
changes in net migration are considered noise. 
Since this noise is then propagated into the 
future, the confidence intervals of the projected 

net migration are very wide and therefore reflect 
our level of uncertainty about the future evolu‑
tion of migration. This is why we have restricted 
the estimation of the parameters of the model 
(and therefore the variance of the error term in 
particular) to the period 1995‑2013, to ensure 
that we do not take account of large fluctua‑
tions in the migratory balance that are too old. 
Estimating the model over a longer period would 
have led to even greater uncertainty about the 
future development of net migration.

Unlike net migration, mortality trends are 
very stable and the model used is able to take 
account of these trends without considering 
them to be predominantly noise. As a result, 
the confidence intervals of projected mortality 
rates and life expectancy are very small. This 
may seem misleading, as one could be led to 
believe that we are almost certain of what will 
happen. In reality, it is important to remember 
that the confidence intervals on future mortality 
levels are conditionally determined by the model 
taking the correct approach to reality. Indeed, 
such levels of confidence can only be attained 
for future mortality rates by assuming that the 
observed trends will continue. In spite of this, 
the model used does not take account of certain 
peculiarities of mortality in France. Firstly, it 
does not allow gender‑specific changes in the 
logarithm of the mortality rate to be projected at 
a given age. Furthermore, it appears that genera‑
tions born after the Second World War have 
very little gain in terms of mortality at a given 
age when compared with previous generations, 
regardless of the age in question (Blanpain & 
Buisson, 2016a). The model used does not allow 
such generation effects to be taken into account: 
deviations from the general trend are therefore 
treated as noise and included in the error terms 
rather than being seen as a well‑identified effect. 
The resulting projected life expectancies are 
therefore somewhat lower than those obtained 
by the projections made by Blanpain & Buisson 
(2016a).

Fertility is modelled differently from net migra‑
tion and mortality. In fact, unlike mortality rates, 
fertility rates do not evolve in a regular manner 
over time. They can increase and then decrease 
or vice‑versa, and therefore intersect. Extending 
fertility rates in accordance with linear trends 
also leads to situations that appear implausible in 
the light of other fertility indicators, such as the 
TFR and the peak fertility rate attained during the 
year, which have remained more or less stable 

4.  see https://www.insee.fr/fr/statistiques/2859843

https://www.insee.fr/fr/statistiques/2859843
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since 1975. The idea was to initially extend the 
TFR, which is an indicator that reflects the level 
of fertility, using the same method as was used 
to project net migration. We then extended the 
age‑specific fertility rates in accordance with 
the method described by Wiśniowski et al. 
(2015), and we modified these rates to bring 
them back down to the TFR projected in the 
first place. This provides a fairly realistic trend 
of age‑specific fertility rates, with the distribu‑
tion shifting towards older ages and becoming 
more symmetrical. This approach (projecting an 
aggregated indicator and then breaking it down 
into detailed categories) is not new and is also 
the approach adopted by the UN. The disadvan‑
tage is that a long‑term TRF must be set and the 
level chosen obviously affects the results.

*  * 
*

Probabilistic population projections provide 
new insights into possible population change. 
They make it possible, under certain modelling 
assumptions, to quantify the level of uncertainty 
concerning the future development of demo‑
graphic indicators and in particular the evolution 
of total population size. They therefore offer a 
clear advantage over deterministic projections 
based on scenarios for which the probability of 
occurrence is not quantified. Any demographic 
indicator, whether it be life expectancy, the 
average age of motherhood or the proportion 
of people aged 65 and over, can be determined 
with some degree of probability. One of the 
potential difficulties in interpreting the results 
stems from the fact that one should not think in 
terms of a single point, but rather in terms of the 
probability distribution, just as a dice cannot be 
defined by just one of its six sides, even if it is 
loaded. Instead, it is by giving the probability 
that each number will appear that we will have 
a good description of the dice and what we can 
expect when it is rolled. Once this difficulty 
has been overcome, the interpretation and use 
of probabilistic population projections offers a 
great deal of freedom and flexibility. Conversely, 
the results of deterministic projections become 
complicated to use and disseminate when the 
number of scenarios under consideration is 
multiplied by the effect of several hypotheses 
intersecting.

There are a number of ways in which the methods 
used in this article, and therefore the results, can 
be improved. The first step is to better under‑
stand the migration phenomena by performing a 

detailed analysis of persons entering the country. 
It would also be interesting to look more thor‑
oughly at estimates of flows of persons leaving 
the country, both now and in the past, which 
are relatively new in France, taking account of 
the available data. When projecting mortality, 
it would be useful to incorporate a generation 
effect and to allow mortality rates to develop 
differently for women and men. Several models 
are possible for this; however, the difficulty still 
remains that if there are too many parameters, 
there is a high risk that the model will not be 
identified or that the convergence of the Markov 
chains used to estimate the a posteriori distri‑
butions will be poor. In order to improve the 
projection of age‑specific fertility, one could, 
as has already been done in several studies, 
find a parametric model of the distribution of 
age‑specific rates. Although it would not neces‑
sarily be easy, it would then suffice to extend 
these parameters, as in the case of Lee‑Carter 
modelling, by detecting regularities and trends 
in the development of these parameters. Beta 
distribution is a possible model, but its rounded 
shape would not represent the data well. Gamma 
distribution would better reflect the distribution 
of fertility rates, but it is defined on a support that 
is open to the right. It must therefore be truncated 
to ensure that there are no unrealistic results. The 
Hadwiger number presents a third option, as it 
seems better suited to modelling the distribution 
of fertility. The downside is that it can take a 
long time to estimate its parameters and their 
interpretation is not necessarily obvious. So why 
not propose an ad hoc function that faithfully 
reflects the observed data? It could be tempting 
to estimate the distribution of fertility rates in 
a non‑parametric way, i.e. in reality by using a 
very large number of parameters. The difficulty 
then lies in the projection of these very many 
parameters. We could also consider developing 
structural models for the three components of 
population change that would make it possible to 
explain past change according to more detailed 
mechanisms and based on external variables; 
however, this would also require to have a 
sufficient number of elements to allow us to 
project the evolution of the variables. It would 
also be very informative to conduct sensitivity 
analyses, which would allow to test how the 
results vary when certain assumptions in the 
models are changed slightly. This would help 
to better understand and quantify the precise role 
of each component in population change.

As can be seen, there is undoubtedly much room 
for improvement, and this will require significant 
investments in research into understanding and 
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modelling migration, mortality and fertility. 
This would only be beneficial for probabilistic 
population projections, the degree of uncertainty 
of which depends above all on our knowledge 
(or ignorance) of these topics. Finally, it is 
important that we do not compare probabilistic 
population projections with deterministic popu‑
lation projections. The latter remain extremely 
useful and allow us to test what would happen 
in the future in a given scenario. The general 

conclusions reached are also very consistent 
with those reached via deterministic projec‑
tions of changes in population size and age 
structure. However, it is primarily up to the 
users of population projections to choose the 
approach that best suits them, depending on 
what they are using them for. Probabilistic and 
deterministic projections are two different ways 
of tackling uncertainty and trying to shed light  
on the future. 
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